Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T22:59:51.128Z Has data issue: false hasContentIssue false

Effect of Acifluorfen on the Absorption, Translocation, and Metabolism of Chlorimuron in Certain Weeds

Published online by Cambridge University Press:  12 June 2017

Dan E. Westberg
Affiliation:
Dep. Crop Sci., North Carolina State Univ., Raleigh, NC 27695-7620
Harold D. Coble
Affiliation:
Dep. Crop Sci., North Carolina State Univ., Raleigh, NC 27695-7620

Abstract

Foliar absorption of 14-chlorimuron at 6, 12, 24, and 48 h after application to common cocklebur was reduced when applied in combination with acifluorfen. A maximum reduction of 10% was observed at 48 h. 14C translocation to meristematic tissue above the treated leaves also was reduced by acifluorfen in common cocklebur at 24 and 48 h after treatment. Absorption and translocation of 14C-chlorimuron in sicklepod was not affected by acifluorfen. Thin layer chromatographic analysis of treated leaf extracts showed two metabolites in common cocklebur (Rf values of 0.0 and 0.42) and four metabolites in sicklepod (Rf values of 0.0, 0.16, 0.33, and 0.50). All metabolites were more polar than the parent compound (Rf value of 0.64). Addition of acifluorfen did not affect chlorimuron metabolism in common cocklebur but reduced metabolism in sicklepod. Absorption, translocation, and metabolism of acifluorfen in common cocklebur or sicklepod were not affected by the addition of chlorimuron.

Type
Feature
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Baird, J. H., Wilcut, J. W., Wehtje, G. R., Dickens, R., and Sharpe, S. 1989. Absorption, translocation, and metabolism of sulfometuron in centipedegrass (Eremochloa ophiuroides) and bahiagrass (Paspalum notatum). Weed Sci. 37:4246.Google Scholar
2. Beyer, E. M. Jr., Duffy, D. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. p. 117189 in Kearney, P. C. and Kaufman, D. D., eds. Vol III Herbicide Chemistry, Degradation, and Mode of Action. Marcel-Dekker, Inc., New York.Google Scholar
3. Brown, H. M., and Neighbors, S. M. 1987. Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity. Pestic. Biochem. Physiol. 29:112120.Google Scholar
4. Claus, J. S. 1987. Chlorimuron-ethyl: a new postemergence herbicide in soybean. Weed Technol. 1:114115.Google Scholar
5. Devine, M. D., and Vandenborn, W. H. 1985. Absorption, translocation, and foliar activity of clopyralid and chlorsulfuron in Canada thistle (Cirsium arvense) and perennial sowthistle (Sonchus arvensis). Weed Sci. 33:524530.Google Scholar
6. Flint, J. L., and Barrett, M. 1989. Antagonism of glyphosate toxicity to johnsongrass (Sorghum halepense) by 2,4-D and dicamba. Weed Sci. 37:700705.Google Scholar
7. Frear, D. S., Swanson, H. R., and Mansager, E. R. 1983. Acifluorfen metabolism in soybean: diphenylether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates. Pestic. Biochem. Physiol. 20:299310.Google Scholar
8. Godley, J. L., and Kitchen, L. M. 1986. Interaction of acifluorfen with fluazifop for annual grass control. Weed Sci. 34:936941.Google Scholar
9. Hageman, L. H., and Behrens, R. 1984. Basis for response differences and two broadleaf weeds to chlorsulfuron. Weed Sci. 32:162167.Google Scholar
10. Hatzios, K. K., and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci. 1:163.Google Scholar
11. Higgins, J. M., Whitwell, T., Corbin, F. T., Carter, G. E. Jr., and Hill, H. S. Jr. 1988. Absorption, translocation, and metabolism of acifluorfen and lactofen in pitted momingglory (Ipomoea lacunosa) and ivyleaf morningglory (Ipomoea hederacea). Weed Sci. 36:141145.Google Scholar
12. Hoagland, D. R., and Arnon, D. J. 1950. The water culture method for growing plants without soil. California Agric. Exp. Stn. Circ. 347. 32 pp.Google Scholar
13. Hutchison, J. M., Shapiro, R., and Sweetser, P. B. 1984. Metabolism of chlorsulfuron by tolerant broadleaves. Pestic. Biochem. Physiol. 22: 243247.Google Scholar
14. Lee, S. D., and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds. Times and methods of application. Weed Sci. 30:520526.Google Scholar
15. Leys, A. R., and Slife, F. W. 1988. Absorption and translocation of 14C-chlorsulfuron and 14C-metsulruron in wild garlic (Allium vineale). Weed Sci. 36:14.Google Scholar
16. Mueller, T. C., Barret, M., and Witt, W. W. 1990. A basis for the antagonistic effect of 2,4-D on haloxyfop-methyl toxicity to johnsongrass (Sorghum halepense). Weed Sci. 38:103107.Google Scholar
17. O'Donovan, J. T., and O'Sullivan, P. A. 1982. The antagonistic action of 2,4-D and bromoxynil on glyphosate phytotoxicity to barley (Hordeum vulgare). Weed Sci. 30:3034.Google Scholar
18. Petersen, P. J., and Swisher, B. A. 1985. Absorption, translocation, and metabolism of 14C-chlorsulfuron in Canada thistle (Cirsium arvense). Weed Sci. 33:711.Google Scholar
19. Ray, T. B. 1985. The site of action of the sulfonylurea herbicides. Proc. Br. Crop. Prot. Conf. Weeds. 1:131138.Google Scholar
20. Reddy, K. N., and Bendixen, L. E. 1989. Toxicity, absorption, and translocation of soil-applied chlorimuron in yellow and purple nutsedge (Cyperus esculentus and C. rotundus). Weed Sci. 37:147151.Google Scholar
21. Ritter, R. L., and Coble, H. D. 1981. Penetration, translocation, and metabolism of acifluorfen in soybean (Glycine max), common ragweed (Ambrosia artemisiifolia), and common cocklebur (Xanthium pensylvanicum). Weed Sci. 29:474480.Google Scholar
22. Sweetser, P. B., Schow, G. S., and Hutchison, J. M. 1982. Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17:1823.Google Scholar
23. Todd, B. G., and Stobbe, E. H. 1980. The basis of the antagonistic effect of 2,4-D on diclofop-methyl toxicity to wild oat (Avena fatua). Weed Sci. 28:371377.Google Scholar
24. Wanamarta, G., Penner, D., and Kells, J. J. 1989. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci. 37:400404.Google Scholar
25. Westberg, D. E., and Coble, H. D. 1992. Antagonism of chlorimuron activity on common cocklebur (Xanthium strumarium) and sicklepod (Cassia obtusifolia) by acifluorfen. Weed Technol. (in press).Google Scholar
26. Wilcut, J. W., Wehtje, G. R., Patterson, M. G., Cole, T. A., and Hicks, T. V. 1989. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogea), and selected weeds. Weed Sci. 37:175180.Google Scholar
27. Wilhm, J. L., Meggitt, W. F., and Penner, D. 1986. Effect of acifluorfen and bentazon on absorption and translocation of haloxyfop and DPX-Y6202 in quackgrass. Weed Sci. 34:333337.Google Scholar
28. Witkowski, D. A., and Halling, B. P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90:12391242.Google Scholar