Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:49:05.307Z Has data issue: false hasContentIssue false

Comparison of the Herbicidal Activity of Phenyl Isothiocyanate with Methyl Bromide in Polyethylene-Mulched Tomato

Published online by Cambridge University Press:  20 January 2017

Sanjeev K. Bangarwa
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
*
Corresponding author's E-mail: jnorswor@uark.edu

Abstract

Field experiments were conducted in 2006 and 2007 to evaluate the herbicidal activity of phenyl isothiocyanate (ITC) on yellow nutsedge, Palmer amaranth, and large crabgrass in tomato grown on two polyethylene-mulched types. Treatments included two mulch types (low density polyethylene [LDPE] mulch and virtually impermeable film [VIF] mulch) and phenyl ITC at 0, 15, 75, 150, 750, and 1,500 kg ha−1. A standard rate of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1 under LDPE mulch was included for comparison. Regardless of mulch type, phenyl ITC at 1,452 (±133) and 1,719 (±426) kg ha−1 was required for broad-spectrum weed control equivalent to methyl bromide in 2006 and 2007, respectively. Tomato injury was ≥ 44% at the highest phenyl ITC rate of 1,500 kg ha−1 at 2 wk after transplanting (WATP) both years, irrespective of mulch type. Greater crop injury was observed from 750 kg ha−1 of phenyl ITC in 2006 (≥ 27%) than in 2007 (≤ 10%). The greater injury in 2006 was attributed to a higher phenyl ITC concentration because holes in the plastic mulch for transplanting were punched at the time of transplanting in 2006; whereas, in 2007 holes were punched 2 d before transplanting, allowing 2 d of aeration before transplanting. Tomato marketable yield at all rates of phenyl ITC was lower than with methyl bromide in 2006. However, in 2007, marketable yield in plots treated with phenyl ITC at 750 kg ha−1 was equivalent to methyl bromide. Overall, VIF mulch was no more effective than LDPE mulch at increasing weed control or improving the marketable yield of tomato either year.

En 2006 y 2007, se realizaron experimentos de campo para evaluar la actividad herbicida de phenyl isothiocyanate (ITC) sobre Cyperus esculentus, Amaranthus palmeri y Digitaria sanguinalis, en tomate producido con dos tipos de cobertura de polyethylene. Los tratamientos incluyeron dos tipos de cobertura (cobertura de polyethylene de baja densidad [LDPE] y cobertura de película virtualmente impermeable [VIF]) y phenyl ITC a 0, 15, 75, 150, 750 y 1,500 kg ha−1. Una dosis estándar de methyl bromide/chloropicrin (67:33%) a 390 kg ha−1 bajo cobertura LDPE fue incluida como comparación. Sin importar el tipo de cobertura, se requirió phenyl ITC a 1,452 (±133) y 1,719 (±426) kg ha−1 para alcanzar un control de malezas de amplio espectro equivalente a methyl bromide en 2006 y 2007, respectivamente. Dos semanas después del trasplante (WATP), en ambos años, el daño al tomate fue 44% a la dosis más alta de phenyl ITC de 1,500 kg ha−1, sin importar el tipo de cobertura. Un mayor daño al cultivo se observó en 2006 (≥27%) que en 2007 (≤10%), a 750 kg ha−1 de phenyl ITC. El mayor daño en 2006 fue atribuido a una mayor concentración de phenyl ITC porque los orificios en el plástico se hicieron al momento del trasplante en 2006, mientras que en 2007 los orificios se perforaron 2 días antes del trasplante, lo que permitió dos días de aireación antes del mismo. El rendimiento de tomate comercializable en todas las dosis de phenyl ITC fue menor que con methyl bromide en 2006. Sin embargo, en 2007, el rendimiento comercializable en las parcelas tratadas con phenyl ITC a 750 kg ha−1 fue equivalente a methyl bromide. En general, la cobertura VIF no fue más efectiva que la cobertura LDPE para incrementar el control de malezas o mejorar el rendimiento comercializable del tomate en ninguno de los años.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahman, I. 1986. Toxicities of host secondary compounds to eggs of the Brassica specialist Dasineura brassicae . J. Chem. Ecol. 12 :14811488.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Gbur, E. E., and Mattice, J. D. 2010. Phenyl isothiocyanate performance on purple nutsedge under virtually impermeable film mulch. HortTechnology 20 :402408.CrossRefGoogle Scholar
Borek, V., Elberson, L. R., McCaffrey, J. P., and Morra, M. J. 1998. Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J. Agric. Food Chem. 46 :53185323.CrossRefGoogle Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43 :30703074.Google Scholar
Buskov, S., Serra, B. Rosa, E., Sorensen, H., and Sorensen, J. C. 2002. Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis). J. Agric. Food Chem. 50 :690695.Google Scholar
Drobinca, L., Kristian, P., and Augustin, J. 1977. The chemistry of the NCS group. Pages 10021197 in Patai, S., ed. The Chemistry of Cyanates and their Derivatives. New York : John Wiley.Google Scholar
Fenwick, G. R., Heaney, R. K., and Mullin, W. J. 1983. Glucosinolates and their breakdown products in food and food plants. Crit. Rev. Food Sci. Nutr. 18 :123201.Google Scholar
Haar, M. J., Fennimore, S. A., Ajwa, H. A., and Winterbottom, C. Q. 2003. Chloropicrin effect on weed seed viability. Crop Prot. 22 :109115.CrossRefGoogle Scholar
Harvey, S. G., Hannahan, H. N., and Sams, C. E. 2002. Indian mustard and allyl isothiocyanate inhibit Scelerotium rolfsii. J. Am. Soc. Hort. Sci. 127 :2731.Google Scholar
Kemble, J. M. 2012. Vegetable Crop Handbook for the Southeastern United States. 13th ed. Lincolnshire, IL : Vance Publishing.Google Scholar
Lear, B. 1956. Results of laboratory experiments with Vapam for control of nematodes. Plant Dis. Rep. 40 :847852.Google Scholar
Lewis, J. A. and Papavizas, G. C. 1971. Effect of sulfur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches . Phytopathology 61 :208214.Google Scholar
Matthiessen, J. N. and Shackleton, M. A. 2005. Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Manage. Sci. 61 :10431051.Google Scholar
Mayton, H. S., Olivier, C., Vaughn, S. F., and Loria, R. 1996. Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86 :267271.Google Scholar
Mojtahedi, H., Santo, G. S., Hang, A. N., and Wilson, J. H. 1991. Suppression of root-knot nematode populations with selected rapeseed cultivars as green manures. J. Nematol. 23 :170174.Google Scholar
Morales-Payan, J. P. 1999. Interference of purple and yellow nutsedges (Cyperus rotundus L. and Cyperus esculentus L.) with tomato (Lycopersicon esculentum Mill. Ph.D. dissertation. Gainesville, FL: University of Florida.Google Scholar
Noble, R. P., Charron, C. S., and Sams, C. E. 1998. Toxicity of Indian mustard and allyl isothiocyanate to masked chafer beetle larvae. HortScience 34 :554555.Google Scholar
Noling, J. W. 2005. Reducing methyl bromide field application rates with plastic mulch technology. http://edis.ifas.ufl.edu/in403. Accessed: January 20, 2012.Google Scholar
Norsworthy, J. K. and Meehan, J. T. 2005a. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53 :515520.CrossRefGoogle Scholar
Norsworthy, J. K. and Meehan, J. T. 2005b. Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci. 53 :884890.Google Scholar
Petersen, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron. J. 93 :3743.Google Scholar
Potter, M. J., Davies, K., and Rathjen, A. J. 1998. Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus . J. Chem. Ecol. 24 :6780.Google Scholar
Rosa, E.A.S., Heaney, R. K., Fenwick, G. R., and Portas, C.A.M. 1997. Glucosinolates in crop plants. Horticultural Rev. 19 :99215.Google Scholar
Sarwar, M., Kirkegaard, J. A., Wong, P.T.W., and Desmarchelier, J. M. 1998. Biofumigation potential of brassicas. Part III: in vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201 :103112.CrossRefGoogle Scholar
Schabenberger, O. and Pierce, F. J. 2002. Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton, FL : CRC Press. Pp. 213222.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9 :218227.Google Scholar
Smolinska, U., Knudsen, G. R., Morra, M. J., and Borek, V. 1997. Inhibition of Aphanomyces euteiches f. sp. pisi by volatile allelochemicals from Brassica napus seed meal. Plant Soil 81 :288292.Google ScholarPubMed
Stuart, A. and Ord, J. K. 1994. Kendall's Advanced Theory of Statistics. London : Edward Arnold. Pp. 350354.Google Scholar
[USDA] United States Department of Agriculture. 1997. United States standards for grades of fresh tomatoes. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050331. Accessed: February 18, 2012.Google Scholar
[USDA] United Stated Department of Agriculture, National Agricultural Statistics Service. 2012. Crop Values 2011 Summary. http://usda01.library.cornell.edu/usda/current/CropValuSu/CropValuSu-02-16-2012.pdf. Accessed: February 18, 2012.Google Scholar
[USEPA] United States Environmental Protection Agency. 2008. Ozone layer depletion—regulatory programs: the phaseout of methyl bromide, Montreal protocol. http://www.epa.gov/ozone/mbr/index.html. Accessed: September 15, 2008.Google Scholar
Wang, D., Yates, S. R., Ernst, F. F., Gan, J., and Jury, W. A. 1997. Reducing methyl bromide emission with a high barrier plastic film and reduced dosages. Environ. Sci. Technol. 31 :36863691.Google Scholar
Weaver, S. E. and Tan, C. S. 1983. Critical period of weed interference in transplanted tomatoes (Lycopersicon esculentum): growth analysis. Weed Sci. 31 :476481.Google Scholar
Webster, T. M. 2006. Weed survey—southern states: vegetable, fruit and nut crops subsection. Proc. South. Weed Sci. Soc. 59 :260277.Google Scholar
Worfel, R. C., Schneider, K. S., and Yang, T. C. S. 1997. Suppressive effect of allyl isothiocyanate on population of stored grain insect pests. J. Food Process. Preserv. 21 :919.Google Scholar
Yates, S. R., Gan, J., Papiernik, S. K., Dungan, R., and Wang, D. 2002. Reducing the fumigant emission after soil application. Phytopathology 92 :13441348.Google Scholar
Zasada, I. A. and Ferris, H. 2004. Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol. Biochem. 36 :10171024.Google Scholar