Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:48:54.721Z Has data issue: false hasContentIssue false

Comparison of Allyl Isothiocyanate and Metam Sodium with Methyl Bromide for Weed Control in Polyethylene-Mulched Bell Pepper

Published online by Cambridge University Press:  20 January 2017

Pratap Devkota*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Ronald Rainey
Affiliation:
Department of Agricultural Economics and Agricultural Business, University of Arkansas, South University Avenue, Room 308J, Little Rock, AR 72204-4940
*
Corresponding author's E-mail: pdevkota@purdue.edu

Abstract

Methyl bromide (MeBr), classified as a Class I ozone-depleting substance, has been banned for ordinary agricultural uses. Weed control in commercial bell pepper production is complicated by the ban on MeBr and the lack of other available and effective soil fumigants. A field study was conducted to evaluate the effectiveness of allyl isothiocyanate (ITC) and metam sodium (methyl ITC generator) as MeBr alternatives for control of Palmer amaranth, large crabgrass, and yellow nutsedge; and for increasing marketable yields in low-density polyethylene (LDPE) –mulched bell pepper. Allyl ITC was applied at 450, 600, and 750 kg ha−1; metam sodium was applied at 180, 270, and 360 kg ha−1; and MeBr plus chloropicrin (67% and 33%, respectively) was applied at 390 kg ha−1. Allyl ITC and metam sodium did not injure bell pepper. Allyl ITC at 750 kg ha−1 or metam sodium at 360 kg ha−1 controlled Palmer amaranth (≥ 83%), large crabgrass (≥ 78%), and yellow nutsedge (≥ 80%) comparably to MeBr. Yellow nutsedge tuber density was ≤ 84 tubers m−2 in plots treated with the highest rate of allyl ITC and metam sodium and was comparable to the tuber density in MeBr-treated plots. Although allyl ITC at 750 kg ha−1 controlled weeds comparable to MeBr, total marketable bell pepper yield with allyl ITC was lower than the yield with MeBr. Conversely, total marketable bell pepper yield with the highest rate of metam sodium (53.5 ton ha−1) was equivalent to the yield (62.5 ton ha−1) in plots treated with MeBr. In conclusion, metam sodium at 360 kg ha−1 is an effective MeBr alternative for weed control in LDPE–mulched bell pepper.

Methyl bromide (MeBr), clasificado como una sustancia Clase I degradante de ozono, ha sido prohibido para el uso ordinario en agricultura. Debido a la prohibición de MeBr y la falta de otros fumigantes de suelos disponibles que sean efectivos, el control de malezas en la producción comercial de pimiento morrón es complicado. Se realizó un estudio de campo para evaluar la eficacia de allyl isothiocyanate (ITC) y metam sodium (generador de methyl ITC) como alternativas a MeBr para el control de Amaranthus palmeri, Digitaria sanguinalis, y Cyperus esculentus; y para el incremento del rendimiento comercializable en producción de pimiento en cobertura plástica de polyethylene de baja densidad (LDPE). Se aplicó allyl ITC a 450, 600, y 750 kg ha−1; metam sodium a 180, 270, y 360 kg ha−1; y MeBr más chloropicrin (67% y 33%, respectivamente) a 390 kg ha−1. Allyl ITC y metam sodium no dañaron al pimiento. Allyl ITC a 750 kg ha−1 o metam sodium a 360 kg ha−1 controlaron A. palmeri (≥83%), D. sanguinalis (≥78%), y C. esculentus (≥80%), lo que fue comparable a MeBr. La densidad de tubérculos de C. esculentus fue ≤84 tubérculos m−2 en parcelas tratadas con la dosis más alta de allyl ITC y metam sodium, y fue comparable con la densidad de tubérculos en las parcelas tratadas con MeBr. Aunque el control de malezas con allyl ITC a 750 kg ha−1 fue comparable a MeBr, el rendimiento total de pimiento comercializable fue menor que el rendimiento con MeBr. Por el contrario, el rendimiento total de pimiento comercializable con la dosis más alta de metam sodium (53.5 ton ha−1) fue equivalente al rendimiento (62,5 ton ha−1) en parcelas tratadas con MeBr. En conclusión, metam sodium a 360 kg ha−1 es una alternativa efectiva al uso de MeBr para el control de malezas en la producción de pimiento con cobertura plástica LDPE.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054.

References

Literature Cited

Aguyoh, J. N. and Masiunas, J. B. 2003. Interference of large crabgrass (Digitaria sanguinalis) with snap beans. Weed Sci. 51:171176.Google Scholar
Ajwa, H. A., Nelson, S. D., and Trout, T. 2003. Water and methyl isothiocyanate distribution in soil after drip fumigation with metam sodium. Pages 39-139-2 in Annual International Research Conference on Methyl Bromide Alternatives Emissions Reductions, San Diego, CA, USA, November 3–6, 2003.Google Scholar
Ajwa, H. A., Trout, T., Mueller, J., Wilhelm, S., Nelson, S. D., Soppe, R., and Shatley, D. 2002. Application of alternative fumigants through drip irrigation systems. Phytopathology. 92:13491355.Google Scholar
Al-Khatib, K., Libbey, C., and Boydston, R. A. 1997. Weed suppression with Brassica green manure crops in green pea. Weed Sci. 45:439445.Google Scholar
Anderson, W. P. 1999. Perennial Weeds: Characteristics and Identification of Selected Herbaceous Species. 1st ed. Ames, IA Iowa State University Press.Google Scholar
Austerweil, M., Steiner, B., and Gamliel, A. 2006. Permeation of soil fumigants through agricultural plastic films. Phytoparasitica. 34:491501.Google Scholar
Bangarwa, S. K. 2010. Integrated strategies for purple (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) management in tomato and bell pepper. . Fayetteville, AR University of Arkansas. 208 p.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Gbur, E. E., Zhang, J., Habtom, T. 2011a. Allyl isothiocyanate: a methyl bromide replacement in polyethylene-mulched bell pepper. Weed Technol. 25:9096 Google Scholar
Bangarwa, S, K., Norsworthy, J. K., Mattice, J. D., and Gbur, E. E. 2011b. Yellow nutsedge interference in polyethylene-mulched bell pepper as influenced by turnip soil amendment. Weed Technol. 25:466472.Google Scholar
Benedixen, L. E. and Nandihalli, U. B. 1987. Worldwide distribution of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1:6165.Google Scholar
Borek, V., Elberson, L. R., McCaffrey, J. P., and Morra, M. J. 1998. Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J. Agric. Food Chem. 46:53185323.Google Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. Agric. Food Chem. 43:30703074.Google Scholar
Csinos, A. S., Laska, J. E., and Childers, S. 2002a. Dye injection for predicting pesticide movement in micro-irrigated polyethylene film mulch beds. Pest Manag. Sci. 58:381384.Google Scholar
Csinos, A. S., Wester, T. M., Sumner, D. R., Johnson, A. W., Dowler, C. C., Seebold, K. W. 2002b. Application and crop safety parameters for soil fumigants. Crop Prot. 21:973982.Google Scholar
Duniway, J. M. 2002. Status of chemical alternatives of methyl bromide for pre-plant fumigation in soil. Phytopathology. 92:13371343.Google Scholar
Ferguson, J. J. and Rathinasabapathi, B. 2003. Allelopathy: how plants suppress other plants. IFAS Extension, University of Florida. HS 944.Google Scholar
Frank, J. R., Schwartz, P H. Jr., and Bourke, J. B. 1988. Insect and weed interactions on bell peppers (Capsicum annuum). Weed Technol. 2:423428.Google Scholar
Fu, R. and Ashley, R. A. 2006. Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper. Weed Sci. 54:364372.Google Scholar
Gilreath, J. P., Noling, J. W., and Santos, B. M. 2004. Methyl bromide alternatives for bell pepper (Capsicum annuum), and cucumber (Cucumis sativus) rotations. Crop Prot. 23:347351.Google Scholar
Gilreath, J. P. and Santos, B. M. 2004. Efficacy of methyl bromide alternatives on purple nutsedge (Cyperus rotundus) control in tomato and pepper. Weed Technol. 18:341345.Google Scholar
Gilreath, J. P., Santos, B. M., and Motis, T. N. 2008. Performance of methyl bromide alternatives in strawberry. HortTechnology. 18:8083.Google Scholar
Gilreath, J. P., Santos, B. M., Motis, T. N., Noling, J. W., and Mirusso, J. M. 2005. Methyl bromide alternatives for nematode and Cyperus control in bell pepper (Capsicum annuum). Crop Prot. 24:903908.Google Scholar
Hartzler, R. G. and Foy, C. L. 1983. Efficacy of three postemergence grass herbicides for soybeans. Weed Sci. 31:557561.Google Scholar
Holmes, G. J. and Kemble, J. M. 2010. Vegetable crop handbook for the southeastern United States. 11th ed. Lincolnshire, IL Vance.Google Scholar
Johnson, W. C. III and Mullinix, B. G. Jr. 2007. Yellow nutsedge (Cyperus esculentus) control with metam-sodium in transplanted cantaloupe (Cucumis melo). Crop Prot. 26:867871.Google Scholar
Lear, B. 1956. Results of laboratory experiments with Vapam for control of nematodes. Plant Dis. Rep. 40:847852.Google Scholar
Morales-Payen, J. P., Santos, B. M. Stall, W. M., and Bewick, T. A. 1998. Interference of purple nutsedge (Cyperus rotundus) population densities on bell pepper (Capsicum annuum) yield as influenced by nitrogen. Weed Technol. 12:230234.Google Scholar
Motis, T. N., Locascio, S. J., and Gilreath, J. P. 2001. Yellow nutsedge interference effects on fruit weight of polyethylene-mulched bell pepper. Proc. Fla. State Hort. Soc. 114:2001.Google Scholar
Motis, T. N., Locascio, S. J., Gilreath, J. P., and Stall, W. M. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 17:543549.Google Scholar
Noling, J. W. and Becker, J. O. 1994. The challenge of research and extension to define and implement alternatives to methyl bromide. J. Nematol. 26:573586.Google Scholar
Norsworthy, J.K., Malik, M. S., Jha, P., and Oliveira, M. J. 2006. Effect of isothiocyanates on purple (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.). Weed Biol. Manag. 6:131138.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005a. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53:515520.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005b. Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci. 53:884890.Google Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22:296302.Google Scholar
Peterson, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothiocyanates from turnip–rape mulch. Agron. J. 93:3743.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P., and Norton, J. A. 2006. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Prot. 25:690695.Google Scholar
Smolinska, U., Knudsen, G. R., Morra, M. J., and Borek, V. 1997. Inhibition of Aphanomyces euteiches f. sp. pisi by volatile allelochemicals form Brassica napus seed meal. Plant Dis. 81:288292.Google Scholar
Swaider, J. M., McCollum, J. P., and Ware, G. 1992. Producing vegetable crops. 4th ed. Danville, IL Interstate.Google Scholar
[USDA] United States Department of Agriculture. 2005. United States standards for grades of sweet peppers. Accessed August 16, 2010.Google Scholar
[USDA-NASS] United States Department of Agriculture. National Agricultural Statistics Service. 2012. http://quickstats.nass.usda.gov/results/7E342444-900E-3492-916D-12D9C825C7F0?pivot=short_desc. Accessed February 11, 2013.Google Scholar
Vaughn, S. F. and Boydston, R. A. 1997. Volatile allelochemicals released by crucifer green manures. Chem. Ecol. 23:21072116.Google Scholar