Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T08:50:08.326Z Has data issue: false hasContentIssue false

Carrier Volume is More Likely to Impact Trifluralin Efficiency than Crop Residue

Published online by Cambridge University Press:  20 January 2017

Catherine P. D. Borger*
Affiliation:
Department of Agriculture and Food Western Australia, P.O. Box 432 Merredin, WA Australia 6415
Glen P. Riethmuller
Affiliation:
Department of Agriculture and Food Western Australia, P.O. Box 432 Merredin, WA Australia 6415
Michael Ashworth
Affiliation:
Australian Herbicide Resistance Initiative, University of Western Australia, 35 Stirling Hwy Crawley, WA Australia 6009
David Minkey
Affiliation:
Western Australian No-Tillage Farmers Association, Leeuwin Centre CSIRO, Private Bag 5 Wembley, WA Australia 6913
Abul Hashem
Affiliation:
Department of Agriculture and Food Western Australia, P.O. Box 483 Northam, WA Australia 6401
*
Corresponding author's E-mail: catherine.borger@agric.wa.gov.au.

Abstract

PRE herbicides are generally less effective in conservation farming systems because of high levels of crop residue. However, performance can be improved if the herbicides are applied with a high carrier volume. This research investigated the interaction of carrier volume and row spacing or height of crop residue on the control of rigid ryegrass with trifluralin, at Cunderdin and Wongan Hills Western Australia. To create plots with varying residue row spacing in 2011, wheat was seeded in 2010 using a narrow row spacing (25 or 22 cm at Cunderdin and Wongan Hills), wide spacing (50 or 44 cm), or not planted to wheat. Narrow or wide row spacing or no crop plots had an average residue biomass of 4480, 3560, and 2430 kg ha−1 at Cunderdin and 1690, 1910, and 1030 kg ha−1 at Wongan Hills. To vary residue height, the wheat was harvested to produce tall, medium, or short crop residue (22, 13, and 5 cm at Cunderdin and 27, 22, and 17 cm at Wongan Hills). Rigid ryegrass seeds were broadcast onto each site in 2011 and trifluralin was sprayed using 50, 75, or 100 L ha−1 carrier volume (directly prior to seeding). Increased carrier volume increased spray coverage at both sites (average cover of 9, 15, and 26% at 50, 75, and 100 L ha−1), leading to improved control of rigid ryegrass (68, 75, and 82% control at Cunderdin and 23, 41, and 68% control at Wongan Hills). Reduced crop residue height or increased row spacing led to reduced rigid ryegrass density at Cunderdin but had no impact at Wongan Hills. Therefore, carrier volume has a more consistent impact on the performance of trifluralin than crop residue row spacing or height.

Los herbicidas PRE son generalmente menos efectivos en sistemas de producción con conservación de suelos debido al alto nivel de residuos de cultivo. Sin embargo, se puede mejorar el desempeño de los herbicidas si estos son aplicados usando altos volúmenes. Esta investigación estudió la interacción entre el volumen de aplicación y la distancia entre hileras y la altura del residuo del cultivo sobre el control de Lolium rigidum con trifluralin, en Cunderdin y Wongan Hills en el oeste de Australia. Para crear las parcelas con diferentes distancias entre hileras de residuos en 2011, se sembró trigo en 2010 usando una distancia entre hileras corta (25 ó 22 cm a Cunderdin y Wongan Hills), una distancia larga (50 ó 44 cm), o no se sembró trigo del todo. Las distancias entre hileras corta, larga, y sin cultivo tuvieron un promedio de residuos de biomasa de 4480, 3560, y 2430 kg ha−1 en Cunderdin y 1690, 1910, y 1030 kg ha−1 en Wongan Hills. Para variar la altura del residuo, el trigo se cosechó de tal forma que se generaron residuos de cultivo altos, medianos, o cortos (22, 13, y 5 cm en Cunderdin y 27, 22, y 17 cm en Wongan Hills). La semilla de L. rigidum se esparció sobre el área experimental en cada localidad en 2011 y se aplicó trifluralin usando 50, 75, ó 100 L ha−1 de volumen de aplicación (directamente antes de la siembra). El aumentar el volumen de aplicación incrementó la cobertura de la aplicación en ambas localidades (cobertura promedio de 9, 15, y 26% a 50, 75, y 100 L ha−1), lo que mejoró el control de L. rigidum (68, 75, y 82% de control en Cunderdin, y 23, 41, y 68% de control en Wongan Hills). Una menor altura en los residuos de cultivo o una mayor distancia entre hileras resultó en una menor densidad de L. rigidum, en Cunderdin, pero no afectó en Wongan Hills. De esta forma, el volumen de aplicación tiene una impacto más consistente en el desempeño de trifluralin que la distancia entre hileras o la altura del residuo del cultivo

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banks, PA, Robinson, EL (1984) The fate of oryzalin applied to straw-mulched and non-mulched soils. Weed Sci 32:269272 Google Scholar
Borger, CPD, Riethmuller, GP, Ashworth, M, Minkey, D, Hashem, A, Powles, SB (2013) Increased carrier volume improves preemergence control of rigid ryegrass (Lolium rigidum) in zero-tillage seeding systems. Weed Technol 27:649655 Google Scholar
Bureau of Meteorology (2013) Climate statistics for Australian locations. http://www.bom.gov.au/climate/data/. Accessed October 2, 2013Google Scholar
Chan, KY, Pratley, JE (1998) Soil structure decline - can the trend be reversed?. Pages 129163 in Pratley, J, Robertson, A, eds. Agriculture and the environmental imperative. Charles Sturt University CSIRO Publishing Google Scholar
Chauhan, BS, Gill, G, Preston, C (2006a) Tillage systems affect trifluralin bioavailability in soil. Weed Sci 54:941947 CrossRefGoogle Scholar
Chauhan, BS, Gill, GS, Preston, C (2006b) Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust J Ag Res 46:15571570 Google Scholar
Chauhan, BS, Gill, GS, Preston, C (2007) Effect of seeding systems and dinitroaniline herbicides on emergence and control of rigid ryegrass (Lolium rigidum) in wheat. Weed Technol 21:5358 Google Scholar
CSBP Ltd. (2013) CSBP soil and plant analysis laboratory. http://www.csbp-fertilisers.com.au/home. Accessed 2 October, 2013Google Scholar
D'Emden, FH, Llewellyn, RS, Burton, MP (2008) Factors influencing adoption of conservation tillage in Australian cropping regions. Aust J Agr Resour Ec 52:16182 Google Scholar
D'Emden, FHD, Llewellyn, RS (2006) No-tillage adoption decisions in southern Australian cropping and the role of weed management. Aust J Exp Agr 46:563569 Google Scholar
Elliott, LF, Cochran, VL, Papendick, RI (1981) Wheat residue and nitrogen placement effects on wheat growth in the greenhouse. Soil Sci 131:4852 Google Scholar
Fox, RD, Derksen, RC, Cooper, JA, Krause, CR, Ozkan, HE (2003) Visual and image system measurement of spray deposits using water-sensitive paper. Appl Eng Agric 19:549552 Google Scholar
Ghadiri, H, Shea, PJ, Wicks, GA (1984) Interception and retention of atrazine by wheat (Triticum aestivum) stubble. Weed Sci 32:2427 Google Scholar
Grover, R, Wolt, J, Cessna, A, Schiefer, H (1997) Environmental fate of trifluralin. Rev Environ Contam T 153:116 Google ScholarPubMed
Guenzi, WD, McCalla, TM, Norstadt, FA (1967) Presence and persistence of phytotoxic substances in wheat, oat, corn and sorghum residues. Agron J 59:163165 Google Scholar
Kenga, E (1980) Predicted bio-concentration factors and soil sorption co-efficients of pesticides and other chemicals. Ecotoxicol Environ Saf 4:2638 Google Scholar
Kimber, RWL (1967) Phytotoxicity from plant residues. I. The influence of rotted wheat straw on seedling growth. Aust J Ag Res 18:361374 CrossRefGoogle Scholar
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot. 13:163178 Google Scholar
Lake, JR, Marchant, JA (1983) The use of dimensional analysis in a study of drop retention on barley. Pestic Sci 14:638644 Google Scholar
Lal, R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:575584 Google Scholar
Lamari, L (2008) Assess 2.0 Image analysis software for disease quantification. Saint Paul, Minnesota: The American Phytopathological Society. Pp 1125 Google Scholar
Lewis, K, Green, A (2013) The pesticides properties database: trifluralin. http://sitem.herts.ac.uk/aeru/iupac/667.htm. Accessed March 9, 2013Google Scholar
Monjardino, M, Pannell, DJ, Powles, SB (2003) Multispecies resistance and integrated management: a bioeconomic model for integrated management of rigid ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Weed Sci 51:798809 Google Scholar
Nordbo, E (1992) Effects of nozzle size, travel speed and air assistance on deposition on artificial vertical and horizontal targets in laboratory experiments. Crop Prot 11:272278 Google Scholar
Nufarm Australia (2009) Triflur Xcel® herbicide product label. Nufarm Australia Limited. http://search.nufarm.com.au/label/nufarm/TRIFLUR_XCEL_24108080.pdf. Accessed August 8, 2012Google Scholar
Permin, O, Odgaard, P, Kirknel, E (1985) Deposition of spray liquid in a plant population. Pages 99117 in Proceedings of the Second Danish Plant Protection Conference. Weeds. Slagelse, Denmark Institut for Ukrudtsbekæmpelse Google Scholar
Salyani, M, Whitney, JD (1990) Ground speed effect on spray deposition inside citrus trees. Trans ASAE 33:361366 Google Scholar
Shackley, B, Zaicou-Kunesch, C, Dhannu, H, Shankar, M, Amjad, M, Young, KR (2013) Wheat variety guide for WA 2013. Bulletin 4839. http://www.nvtonline.com.au/wp-content/uploads/2013/06/WA-Wheat-Variety-Guide-2013.pdf. Accessed 25 September, 2013Google Scholar
Tennant, D (2000) Crop water use. Pages 5568 in Anderson, WK, Garlinge, JR, eds. The Wheat Book: Principles and Practice. Perth: Agriculture Western Australia Google Scholar
Thériault, R, Salyani, M, Panneton, B (2001) Spray distribution and recovery in citrus application with a recycling sprayer. Trans ASAE 44:10831088 Google Scholar
Travis, JW, Skroch, WA, Sutton, TB (1987) Effects of travel speed, application volume, and nozzle arrangement on deposition and distribution of pesticides in apple trees. Plant Dis 71:606612 Google Scholar
VSN International (2012) GenStat for Windows 15th edition. Hemel Hempstead, UK: VSN International. Pp 1360 Google Scholar
Whitney, JD, Salyani, M, Churchill, DB, Knapp, JL, Whiteside, JO, Littell, RC (1989) A field investigation to examine the effects of sprayer type, ground speed, and volume rate on spray deposition in Florida citrus. J Agr Eng Res 42:275283 Google Scholar