Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:10:38.693Z Has data issue: false hasContentIssue false

Bioassay to Detect MON-37500 and Triasulfuron Residues in Soils

Published online by Cambridge University Press:  20 January 2017

Eva Hernández-Sevillano
Affiliation:
Department. Departamento de Protección Vegetal, INIA, Carretera de La Coruña km. 7.5, 28040 Madrid, Spain
Mercedes Villarroya
Affiliation:
Department. Departamento de Protección Vegetal, INIA, Carretera de La Coruña km. 7.5, 28040 Madrid, Spain
José L. Alonso-Prados
Affiliation:
Department. Departamento de Protección Vegetal, INIA, Carretera de La Coruña km. 7.5, 28040 Madrid, Spain
José M. García-Baudín*
Affiliation:
Department. Departamento de Protección Vegetal, INIA, Carretera de La Coruña km. 7.5, 28040 Madrid, Spain
*
Corresponding author's E-mail: baudin@inia.es.

Abstract

Sulfonylurea herbicide residues in soil can affect rotational crops even at low concentrations. Although analytical methods are efficient enough to measure them, the lack of an efficient herbicide extraction technique makes bioassays useful for determining the presence of phytotoxic levels of sulfonylurea residues in soil. A growth chamber bioassay using sunflower was developed to detect MON-37500 and triasulfuron residues in two different soils. Root length was measured 15 d after the treatment. A sigmoid equation described plant root length response as a function of herbicide concentration. The nonlinear regression established a range of I50 values from 0.9 to 2.9 ppb ai for both sulfonylureas.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2000. Guidance Document on Residue Analytical Methods. European Commission Document. Health and Consumer Protection Directorate General. SANCO/825/00 rev. 6, 20 June 2000. 16 p.Google Scholar
Beyer, E. M., Brown, H. M., and Duffy, M. J. 1987. Sulfonylurea herbicide soil relations. Br. Crop Prot. Conf.—Weeds 2: 531540.Google Scholar
Blacklow, W. M. and Pheloung, P. C. 1991. Sulfonylurea herbicides applied to acidic sandy soils: a bioassay for residues and factors affecting recoveries. Aust. J. Agric. Res. 42: 12051216.Google Scholar
Günther, P., Pestemer, W., Rahman, A., and Nordmeyer, H. 1993. A bioassay technique to study the leaching behaviour of sulfonylurea herbicides in different soils. Weed Res. 33: 177185.Google Scholar
Hance, R. J. 1987. Some continuing uncertainties in the knowledge of herbicide behaviour in the soil. Ann. Appl. Biol. 110: 195202.CrossRefGoogle Scholar
Hernández-Sevillano, E., Villarroya, M., Chueca, M. C., Alonso-Prados, J. L., and García-Baudín, J. M. 1999. A rapid, sensitive bioassay method for sulfonylurea herbicides. Br. Crop Prot. Conf.—Weeds 2: 711716.Google Scholar
Junnila, S., Heinonen-Tanski, H., Erviö, L.-R., and Laitinen, P. 1994. Phytotoxic persistence and microbiological effects of chlorsulfuron and metsulfuron in Finnish soils. Weed Res. 34: 413423.Google Scholar
Kotoula-Syka, E., Eleftherohorinos, I. G., Gagianas, A., and Sficas, A. G. 1993. Phytotoxicity and persistence of chlorsulfuron, metsulfuron-methyl, triasulfuron and tribenuron-methyl in three soils. Weed Res. 33: 355367.CrossRefGoogle Scholar
Landi, P. A. and Catizone, P. 1989. Response of maize inbred lines and hybrids to chlorsulfuron. Weed Res. 29: 265271.Google Scholar
Moyer, J. R., Esau, R., and Kozub, G. C. 1990. Chlorsulfuron persistence and response of nine rotational crops in alkaline soils in Southern Alberta. Weed Technol. 4: 543548.CrossRefGoogle Scholar
Nordh-Christerson, M. and Bergström, L. 1989. Field observation of soil movement and residues of sulfonylureas in Sweden. Br. Crop Prot. Conf.—Weeds 3: 11271132.Google Scholar
Parrish, S. K., Euler, J. P., Grogna, R., Spirlet, M., Walker, A., MacVicar, F. H., and Cullington, J. E. 1995. Field, glasshouse and laboratory investigations into the rate of degradation of MON 37500 in European soils. Br. Crop Prot. Conf.—Weeds 2: 667672.Google Scholar
Rahman, A., James, T. K., and Günther, P. 1993. Bioassays of soil applied herbicides. Proc. Int. Symp. Indian Soc. Weed Sci. Hisar 1: 95106.Google Scholar
Sarmah, A. K., Kookana, R. S., and Alston, A. M. 1999. Degradation of chlorsulfuron and triasulfuron in alkaline soils under laboratory conditions. Weed Res. 39: 8394.CrossRefGoogle Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 19: 218227.Google Scholar
Shinn, S. L., Thill, D. C., and Price, W. J. 1999. Volunteer barley (Hordeum vulgare) control in winter wheat (Triticum aestivum) with MON 37500. Weed Technol. 13: 8893.Google Scholar
Statgraphics Plus for Windows. 1996. Advanced Regression Module Manual. Version 2. Rockville, MD: Manugistics. 307 p.Google Scholar
Stork, P. 1995. Field leaching and degradation of soil applied herbicides in a gradationally textured alkaline soil: chlorsulfuron and triasulfuron. Aust. J. Agric. Res. 46: 14451458.Google Scholar
Stork, P. and Hannah, M. C. 1996. A bioassay method for formulation testing and residue studies of sulfonylurea and sulfonanylide herbicides. Weed Res. 36: 271281.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose-response curves and statistical models. In Streibig, J. C. and Kudsk, P., eds. Herbicide Bioassays. Boca Raton, FL: CRC Press. pp. 2955.Google Scholar
Vicari, A., Catizone, P., and Zimdahl, R. L. 1994. Persistence and mobility of chlorsulfuron and metsulfuron under different soil and climatic conditions. Weed Res. 34: 147155.Google Scholar
Vicari, A., Dinelli, G., and Catizone, P. 1998. Evaluation of the biological activity of 16 sulfonylureas in soil by Nasturtium officinale R. Br. bioassay. Agrochimica 6: 273283.Google Scholar
Walker, A. and Welch, S. J. 1989. The relative movement and persistence in soil of chlorsulfuron, metsulfuron-methyl and triasulfuron. Weed Res. 29: 375383.CrossRefGoogle Scholar