Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:29:27.506Z Has data issue: false hasContentIssue false

Winter Annual Broadleaf Weeds and Winter Wheat Response to Postemergence Application of Two Saflufenacil Formulations

Published online by Cambridge University Press:  20 January 2017

John C. Frihauf*
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Phillip W. Stahlman
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
Patrick W. Geier
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
Dallas E. Peterson
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: john.frihauf@basf.com.

Abstract

Field experiments in winter wheat were initiated at two locations in the fall of 2006 and 2007 to evaluate winter annual broadleaf weeds and winter wheat response to POST applications of two saflufenacil formulations applied alone and in combination with 2,4-D amine. Emulsifiable concentrate (EC) and water-dispersible granule (WG) formulations of saflufenacil at 13, 25, and 50 g ai ha−1 were applied with 1.0% (v/v) crop oil concentrate (COC) and mixed with 2,4-D amine at 533 g ae ha−1 without adjuvant. Regardless of rate or formulation, saflufenacil plus COC and saflufenacil plus 2,4-D amine controlled blue mustard ≥ 91% at 17 to 20 d after treatment (DAT) compared with ≤ 50% control with 2,4-D amine alone. At least 25 g ha−1 of saflufenacil EC was necessary to control flixweed > 90%. Excluding COC from saflufenacil plus 2,4-D amine reduced flixweed control from the saflufenacil WG formulation more than the EC formulation. Most saflufenacil treatments did not control henbit satisfactorily (≤ 80%). Wheat foliar necrosis increased with increasing saflufenacil rate to as high as 30% at 3 to 6 DAT, but declined to < 15% at 10 to 20 DAT and was not evident at 30 DAT. Saflufenacil rate, formulation, and mixing with 2,4-D amine also influenced wheat stunting, but to a lesser extent than foliar necrosis. Saflufenacil EC consistently caused greater foliar necrosis and stunting on wheat than saflufenacil WG. Leaf necrosis and stunting were reduced by tank-mixing saflufenacil formulations with 2,4-D amine without COC. Grain yields of most saflufenacil treatments were similar to 2,4-D amine under weedy conditions and herbicide treatments had no effect on grain yield in weed-free experiments. Saflufenacil formulations at 25 to 50 g ha−1 with 2,4-D amine and saflufenacil WG at 25 to 50 g ha−1 with COC can control winter annual broadleaf weeds with minimal injury (< 15%) and no grain yield reductions. The addition of saflufenacil as a POST-applied herbicide would give wheat growers another useful tool to control annual broadleaf weeds, including herbicide-resistant weed species.

Se iniciaron experimentos de campo en cultivos de Triticum aestivum L., en dos locaciones en el otoño de 2006 y 2007, para evaluar las malezas anuales de hoja ancha de invierno y la respuesta del cultivo a las POST aplicaciones de dos fórmulas de saflufenacil aplicadas individualmente o en combinación con 2,4-D amina. Las fórmulas de saflufenacil concentrado ó emulsificable (EC) y granulado soluble en agua (WG) a 13, 25, y 50 g ia ha−1 se aplicaron con 1.0% v/v de concentrado de aceite(COC) y se mezcló con 2,4-D amina a 533 g ea ha−1 sin adyuvante. Sin importar la dosis o la fórmula, el saflufenacil más COC y el saflufenacil más 2,4-D amina controlaron la Chorispora tenella (Pallas) ≥ 91% entre los 17 a 20 días después del tratamiento, comparado con ≤ 50% de control con sólo el 2,4-D amina. Para controlar la Descurainia sophia L. Webb en > 90%. se necesitó al menos 25 g ha−1 de saflufenacil EC. La eliminación COC de la fórmula de saflufenacil más 2,4-D amina redujo el control de Descurainia sophia L. Webb, a partir de la fórmula de saflufenacil WG más que la fórmula con EC. La mayoría de los tratamientos de saflufenacil no controlaron satisfactoriamente el Lamium amplexicaule L., LAMAM (≤ 80%). La necrosis foliar del Triticum aestivum L., se incrementó con una mayor dosis de saflufenacil hasta alcanzar 30% de los 3 a 6 DAT, pero disminuyó a < 15% de los 10 a los 20 DAT y no fue evidente a los 30 DAT. La dosis de saflufenacil, su fórmula y la mezcla con el 2,4-D amina también tuvo influencia en el achaparramiento del Triticum aestivum L., pero en menor grado que la necrosis foliar. El Saflufenacil EC consistentemente causó mayor necrosis foliar y acaparamiento en la gramínea que el saflufenacil WG. La necrosis de la hoja y el achaparramiento disminuyeron cuando se mezcló la fórmula de saflufenacil con el 2,4-D amina sin COC. Los rendimientos del grano en la mayoría de los tratamientos de saflufenacil fueron similares a los obtenidos con el 2,4-D amina bajo condiciones de maleza abundante y los tratamientos de herbicida no afectaron el rendimiento del grano en experimentos libres de malezas. Las fórmulas de saflufenacil de 25 a 50 g ha−1 con 2,4-D amina y el saflufenacil WG de 25 a 50 g ha−1 con COC, pueden controlar las malezas anuales de hoja ancha de invierno con daño mínimo de (< 15%) y sin disminución del rendimiento del grano. La adición de saflufenacil como un herbicida POST aplicado podría proporcionar a los productores de Triticum aestivum L., de otra herramienta útil para controlar las malezas de hoja ancha incluyendo especies de maleza resistentes al herbicida.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, , 2008. Kixor Herbicide Worldwide Technical Brochure. Research Triangle Park, NC: BASF.Google Scholar
Baltazar, A. M. and Smith, R. J. Jr. 1994. Propanil-resistant barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Technol. 8:576581.Google Scholar
Bernards, M. L., Gaussoin, R. E., Klein, R. N., Knezevic, S. Z., Lyon, D. J., Sandell, L. D., Wilson, R. G., Shea, P. J., and Ogg, C. L. 2010. Guide for Weed Management. Lincoln, NE: University of Nebraska-Lincoln Extension. EC130.Google Scholar
Bevard, D. S. and Watschke, T. L. 1999. Seedling creeping bentgrass (Agrostis stolonifera) tolerance to dithiopyr. Weed Technol. 13:216220.Google Scholar
Durgan, B. R., Yenish, J. P., Daml, R. J., and Miller, D. W. 1997. Broadleaf weed control in hard red spring wheat (Triticum aestivum) with F8426. Weed Technol. 11:489495.Google Scholar
Ellis, A. T., Morgan, G. D., and Mueller, T. C. 2008. Mesosulfuron-resistant Italian ryegrass (Lolium multiflorum) biotype from Texas. Weed Technol. 22:431434.Google Scholar
Frihauf, J. C., Stahlman, P. W., Al-Khatib, K., and Charvat, L. D. 2010. Saflufenacil absorption and translocation in winter wheat (Triticum aestivum L.). Pestic. Biochem. Physiol. In press.Google Scholar
Frihauf, J. C., Stahlman, P. W., and Geier, P. W. 2010. Winter wheat and weed response to postemergence saflufenacil alone and in mixtures. Weed Technol. 24:262268.CrossRefGoogle Scholar
Gast, R. E., Fennimore, S. A., Mueller, J. P., Richardson, J. M., Smith, R. F., and Tickes, B. R. 2004. Comparison of oxyfluorfen formulations for postemergence weed control in broccoli and cauliflower. Proc. West. Soc. Weed Sci. 57:57.Google Scholar
Geier, P. W. and Stahlman, P. W. 2008. Efficacy of pyrasulfotole and bromoxynil tank mixtures in wheat. Champaign, IL: North Central Weed Sci. Soc. 4. [Abstract] [CD-ROM computer file].Google Scholar
Geier, P. W., Stahlman, P. W., and Charvat, L. D. 2009. Dose response of five broadleaf weeds to saflufenacil. Weed Technol. 23:313316.Google Scholar
Grossmann, K., Niggweg, R., Christiansen, N., Looser, R., and Ehrhardt, T. 2010. The herbicide saflufenacil (Kixor™) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 58:19.Google Scholar
Hatterman-Valenti, H. M. and Auwarter, C. P. 2007. Weed control in transplanted cabbage. Champaign, IL: North Central Weed Sci. Soc. Abstr. 53. [CD-ROM computer file] (December 2007).Google Scholar
Heap, I. 2010. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: January 11, 2010.Google Scholar
Howatt, K. A. 2005. Carfentrazone-ethyl injury to spring wheat (Triticum aestivum) is minimized by some ALS-inhibiting herbicides. Weed Technol. 19:777783.Google Scholar
Jordan, D. L., Burns, A. B., Barnes, C. J., Barnett, W., and Herrick, J. K. 1997. Influence of adjuvants and formulation on barnyardgrass (Echinochloa crus-galli) control with propanil in rice (Oryza sativa). Weed Technol. 11:762766.CrossRefGoogle Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2010a. Application timing and adjuvant type affected saflufenacil efficacy on selected broadleaf weeds. Crop Prot. 29:9499.CrossRefGoogle Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2010b. Tolerance of winter wheat (Triticum aestivum L.) to pre-emergence and post-emergence application of saflufenacil. Crop Prot. 29:148152.CrossRefGoogle Scholar
Lee, C., Roeth, F., and Martin, A. 2000. Herbicide Resistant Weeds. Lincoln, NE: University of Nebraska-Lincoln Extension. G1399.Google Scholar
Liebl, R., Walter, H., Bowe, S. J., Holt, T. J., and Westberg, D. E. 2008. BAS 800H: A new herbicide for preplant burndown and preemergence dicot weed control. Lawerence, KS: Weed Sci. Soc. Am. 120. [Abstract] [CD-ROM computer file].Google Scholar
Lyon, D. J., Klein, R. N., and Wilson, R. G. 2006. NebGuide: Blue Mustard Control. Lincoln, NE: University of Nebraska-Lincoln Extension. G1272.Google Scholar
Mallory-Smith, C., Hyslop, G. R., Thill, D., and Morishita, D. 1993. Herbicide-resistant weeds and their management. Moscow, ID: Pacific Northwest Extension, University of Idaho, Oregon State University, and Washington State University Extension. PNW 437.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
Mellendorf, T. G., Young, B. G., and Matthews, J. L. 2008. Interactions of glyphosate and saflufenacil on glyphosate-susceptible and glyphosate-resistant horseweed populations. Champaign, IL: North Central Weed Sci. Soc. 47. [Abstract] [CD-ROM Computer File].Google Scholar
Molin, W. T. and Hirase, K. 2004. Comparison of commercial glyphosate formulations for control of prickly sida, purple nutsedge, morningglory, and sicklepod. Weed Biol. Manag. 4:136141.Google Scholar
Peterson, D. E., Al-Khatib, K., and Roberts, R. 2006. ALS resistance in a biotype of bushy wallflower. Proc. Western Soc. Weed Sci. 59:42.Google Scholar
Peterson, D. E., Al-Khatib, K., Thompson, C. R., and Maxwell, T. M. 2009. Confirmation of ALS-resistant flixweed in Kansas. Proc. Western Soc. Weed Sci. 62:30.Google Scholar
Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
Reddy, K. N. and Zablotowicz, R. M. 2003. Glyphosate-resistant soybean response to various salts of glyphosate and glyphosate accumulation in soybean nodules. Weed Sci. 51:496502.CrossRefGoogle Scholar
Regehr, D. L. and Morishita, D. W. 1989. Questions and Answers on Managing Herbicide-Resistant Weeds. Manhattan, KS: Kansas State University Coop. Ext. Service. MF-926.Google Scholar
Richardson, J. M., Mueller, J. P., Yoshida, H. H., Gast, R. E., and Dorich, R. A. 2006. Performance of a new oxyfluorfen formulation on early-stage onions in five western states. Proc. West. Soc. Weed Sci. 59:70.Google Scholar
Sikkema, P. H., Shropshire, C., and Soltani, N. 2008. Tolerance of spring barley (Hordeum vulgare L.), oats (Avena sativa L.) and wheat (Triticum aestivum L.) to saflufenacil. Crop Prot. 27:14951497.Google Scholar
Soltani, N., Shropshire, C., and Sikkema, P. H. 2008. Tolerance of corn to preemergence and postemergence applications of BAS 800H. Lawrence, KS: Weed Sci. Soc. Am. 14. [Abstract] [CD-ROM Computer File].Google Scholar
Stahlman, P. W., Olsen, B. L. S., and Peterson, D. E. 2009. Top-dress applications of UAN fertilizer with herbicides on wheat. Manhattan, KS: Kansas State University Coop. Ext. Service. MF-2903.Google Scholar
Swan, D. G. 1971. Competition of blue mustard with winter wheat. Weed Sci. 19:340342.Google Scholar
Thompson, C. R., Peterson, D. E., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2010. Chemical weed control for field crops, pastures, rangeland, and noncropland. Manhattan, KS: Kansas State University Coop. Ext. Service. Report of Progress 1027.Google Scholar
Unland, R. D., Al-Khatib, K., and Peterson, D. E. 1999. Interactions between imazamox and diphenylethers. Weed Sci. 47:462466.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service 2005. Agricultural Chemical Usage Field and Vegetable Crops. Chemical Distribution Rate. Washington, DC: USDA-National Agricultural Statistics Service. 20. p. 20 Google Scholar
USDA-NASS 2007. Agricultural Chemical Usage. 2006 Field Crops Summary. Washington, DC: USDA-NASS. 53. p. 53 Google Scholar
Weller, S. C. and Carpenter, P. L. 1983. Influence of oxyfluorfen formulation on growth of container grown nursery stock. Weed Sci. Soc. Am. 23:39. [Abstract].Google Scholar
Wesley, M. T. and Shaw, D. R. 1992. Interactions of diphenylether herbicides with chlorimuron and imazaquin. Weed Technol. 6:345351.CrossRefGoogle Scholar