Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:14:37.776Z Has data issue: false hasContentIssue false

Use of a Rolled-rye Cover Crop for Weed Suppression in No-Till Soybeans

Published online by Cambridge University Press:  20 January 2017

Ruth A. Mischler
Affiliation:
Department of Crop and Soil Sciences, Penn State University, University Park, PA 16802
William S. Curran*
Affiliation:
Department of Crop and Soil Sciences, Penn State University, University Park, PA 16802
Sjoerd W. Duiker
Affiliation:
Department of Crop and Soil Sciences, Penn State University, University Park, PA 16802
Jeffrey A. Hyde
Affiliation:
Department of Agricultural Economics and Rural Sociology, Penn State University, University Park, PA 16802
*
Corresponding author's E-mail: wcurran@psu.edu.

Abstract

Cover crop management with a roller/crimper might reduce the need for herbicide. Weed suppression from a rolled cereal rye cover crop was compared to no cover crop with and without postemergence herbicide application in no-till soybean. The experiment was designed as a two-way factorial with rye termination and soybean planting date as the first factor and weed control treatment as the second. Cereal rye was drill-seeded in late September and managed using glyphosate followed by a roller/crimper in the spring. Soybean was no-till seeded after rolling and glyphosate was applied postemergence about 6 wk after planting to half the plots. Rye biomass doubled when delaying rye kill by 10 to 20 d. Weed density and biomass were reduced by the rye cover crop in all site–location combinations except one, but delaying rye kill and soybean planting date only reduced both weed density and biomass at a single location. The cover crop mulch provided weed control similar to the postemergence herbicide in two of four locations. Treatments did not affect soybean grain yield in 2007. In 2008, yield at Landisville with rye alone was equal to those yields receiving the postemergence herbicide, whereas at Rock Springs, it was equivalent or less. The net added cost of a rye cover crop was $123 ha−1 with or $68.50 ha−1 without a postemergence herbicide application. A rolled-rye cover crop sometimes provided acceptable weed control, but weed control alone did not justify the use of the cover crop. The potential for reduced herbicide use and other ecosystem services provided by a cover crop justify further refinement and research in this area.

El manejo de cultivos de cobertera utilizando rodillo podría reducir la necesidad de herbicidas. Se comparó la supresión de la maleza con centeno (Secale cereale L.) como cultivo de cobertera apisonado con rodillo, con un tratamiento sin cobertera con o sin aplicación de herbicida postemergente en un cultivo de soya sin labranza. El experimento se diseñó como factorial de dos vías con la fecha de eliminación del centeno y la siembra de la soya como el primer factor y el tratamiento del control de maleza como el segundo. El centeno fue sembrado con maquinaria a finales de septiembre y tratado con glifosato seguido por el paso de un rodillo en la primavera. La soya se sembró en suelo sin labranza después de pasar el rodillo, y el glifosato se aplicó a la mitad de las parcelas en forma postemergente aproximadamente 6 semanas después de la siembra. La biomasa del centeno se duplicó cuando se retrasó su eliminación química de 10 a 20 días. La densidad y la biomasa de la maleza se redujeron con el uso de centeno en todas las combinaciones sitio-localidad excepto una, pero el retraso en la fecha de eliminación del centeno y la siembra de la soya, sólo disminuyeron la densidad y biomasa de la maleza en una sola localidad. El cultivo de cobertera, proporcionó un control de maleza similar al herbicida postemergente en dos de los cuatro sitios. Los tratamientos no afectaron el rendimiento del grano de soya en 2007. En 2008, el rendimiento en Landisville con sólo centeno fue igual a los rendimientos obtenidos con la aplicación del herbicida postemergente, mientras en Rock Springs fue equivalente o menor. El costo neto adicional de un cultivo de cobertera de centeno fue de $123 US ha−1 con la aplicación postemergente de herbicida o de $68.50 US ha−1 sin ella. El cultivo de centeno y uso del rodillo, algunas veces proporcionó un control aceptable de maleza, pero el control de maleza por sí solo no justificó el uso del cultivo de cobertera. El potencial para la reducción en el uso de herbicidas y otros servicios al ecosistema proporcionados por un cultivo de cobertera, justifican mayor refinamiento e investigación en esta área.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, 2008a. Cereal Rye. UC SAREP Cover Crop Resource Page, University of California, Davis. http://www.sarep.ucdavis.edu/ccrop/. Accessed: December 10, 2008.Google Scholar
Anonymous, 2008b. Bedford County Cover Crop Incentive Program. Bedford Co. Conservation District, Bedford, PA. http://www.bedfordcountyconservation.com. Accessed: December 10, 2008.Google Scholar
Anonymous, 2008c. USDA National Agricultural Statistics Service. http://www.nass.usda.gov/. Accessed: December 12, 2008.Google Scholar
Ashford, D. L. and Reeves, D. W. 2003. Use of a mechanical roller-crimper as an alternative kill method for cover crops. Am. J. Altern. Agric 18:3745.Google Scholar
Baker, W. L. 1981. Soil survey of Centre County, Pennsylvania. Washington, DC: USDA Soil Conservation Service. 163.Google Scholar
Barberi, P. and Mazzoncini, M. 2001. Changes in weed community composition as influenced by cover crop and management system in continuous corn. Weed Sci 49:491499.Google Scholar
Clark, A. 2007. Managing Cover Crops Profitably. 3rd ed. Handbook Series Book 3. Beltsville, MD: Sustainable Agriculture Network. 244.Google Scholar
Creamer, N. G. and Dabney, S. M. 2002. Killing cover crops mechanically: review of recent literature and assessment of new research results. Am. J. Altern. Agric 17:3240.Google Scholar
Edwards, W. M., Triplet, G. B., Doren, D. M. V., Owens, L. B., Redmond, C. E., and Dick, W. A. 1993. Tillage studies with a corn-soybean rotation: hydrology and sediment loss. J. Soil Sci. Soc. Am 57:10511055.CrossRefGoogle Scholar
Kornecki, T., Raper, R., Arriaga, F., Balkcom, K., and Price, A. 2005. Effects of rolling/crimping rye direction and different row-cleaning attachments on cotton emergence and yield. Pages 169177. in. Southern Conservation Tillage System Conference, Clemson University, June 27–29, 2005. Florence, SC: Clemson University.Google Scholar
Langdale, G. W., Blevins, R. L., Karlen, D. L., McColl, D. K., Nearing, M. A., Skidmore, E. L., Thomas, A. W., Tyler, D. D., and Williams, J. R. 1991. Cover crop effects on soil erosion by wind and water. Pages 1522. in Hargrove, W. L. ed. Cover Crops For Clean Water. Ankeny, IA: Soil and Water Conservation Society.Google Scholar
Maryland Department of Agriculture 2009. Maryland's 2009–2010 Winter Cover Crop Program. http://www.mda.state.md.us/resource_conservation/financial_assistance/cover_crop/index.php. Accessed: November 3, 2009.Google Scholar
Masiunas, J. B., Weston, L. A., and Weller, S. C. 1995. The impact of rye cover crop on weed populations in a tomato cropping system. Weed Sci 43:318323.Google Scholar
Mirsky, S. B. 2008. Evaluating Constraints and Opportunities in Managing Weed Populations With Cover Crops. Ph.D Dissertation. University Park, PA: Penn State University. 185.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res 33:487499.Google Scholar
Moore, M. J., Gillespie, T. J., and Swanton, C. J. 1994. Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development. Weed Technol 8:512518.CrossRefGoogle Scholar
Myers, M. W., Curran, W. S., VanGessel, M. J., Calvin, D. D., and Mortensen, D. A. 2004. Predicting weed emergence for eight annual species in the northeastern United States. Weed Sci 53:913919.CrossRefGoogle Scholar
Pike, A. W. 2008. Pennsylvania's 2008 Machinery Custom Rates USDA National Agricultural Statistics Service. 14.Google Scholar
2002. Roth, G. and Hyde, J. Partial Budgeting for Agricultural Businesses. University Park, PA: Penn State University. CAT UA366. 7.Google Scholar
2007. Rudisill, A. 2007–2008 Agronomy Guide. College of Agricultural Sciences. University Park, PA: Penn State University. 331.Google Scholar
Ruffo, M. L. and Bollero, G. A. 2003. Modeling rye and hairy vetch residue decomposition as a function of degree-days and decomposition-days. Agron. J. 95:900907.Google Scholar
SAS Institute 2004. SAS/STAT 9.1 User's Guide. Cary, NC: SAS Inst. 200.Google Scholar
Shipley, P. R., Meisinger, J. J., and Decker, A. M. 1992. Conserving residual corn fertilizer nitrogen with winter cover crops. Agron. J. 84:869876.Google Scholar
Steel, R. G. D., Torrie, J. H., and Dickey, D. A. 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. New York: McGraw Hill. 666.Google Scholar
Westgate, L. R., Singer, J. W., and Kohler, K. A. 2005. Method and timing of rye control affects soybean development and resource utilization. Agron. J. 97:806816.CrossRefGoogle Scholar
Zadoks, J. C., Chang, T. T., and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res 14:415421.Google Scholar