Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:34:04.308Z Has data issue: false hasContentIssue false

Surfactant-Induced Phytotoxicity

Published online by Cambridge University Press:  12 June 2017

Richard H. Falk
Affiliation:
Div. Biol. Sci. Sect. Bot., Univ. California, Davis, CA 95616
Richard Guggenheim
Affiliation:
Div. Biol. Sci. Sect. Bot., Univ. California, Davis, CA 95616
Gerhard Schulke
Affiliation:
SEM-Laboratory, Univ. Basel. CH-4056, Basel, Switzerland

Abstract

The leaves of tall morningglory, giant duckweed, and common purslane were treated with nine surfactants at a concentration of 0.1% and examined after 24 hr using cryo-scanning electron microscopy for phytotoxicity as evidenced by tissue damage and epicuticular wax morphology changes. In some instances, tissue damage could be discerned; however, the effects of a particular surfactant were not uniform across the three species. Morphological alteration of epicuticular waxes was not observed. Gas chromatographic analyses of the epicuticular waxes of the species used in the study reveal component differences and may, in part, explain the lack of uniform response across species for a particular surfactant.

Type
Research
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Blaker, T. W. and Greyson, R. I. 1988. Developmental variation of leaf surface wax of maize, Zea mays . Can J. Bot. 66:839846.Google Scholar
2. Blowers, M. H., Percival, M. P., and Baker, N. R. 1988. Chlorophyll fluorescence as a probe of cuticle resistance to herbicide absorption by intact leaves. p. 209210 in Proc. Eur. Weed Res. Soc. Symp. Factors Affecting Herbicidal Activity and Selectivity.Google Scholar
3. Bukovac, M. J., Whitmoyer, R. E., and Reichard, D. R. 1983. Nature and effects of surfactant deposits on leaf surfaces. HortScience 18:618.Google Scholar
4. Deamer, D. W. and Crofts, A. 1967. Action of Triton X-100 on chloroplast membranes. J. Cell Biol. 33:395410.CrossRefGoogle ScholarPubMed
5. de Ruiter, H., Verbeek, M. A. M., and Uffing, A. J. M. 1988. Mode of action of a nonionic and a cationic surfactant in relation to glyphosate. p. 4455 in Cross, B. and Scher, H. B., eds. Pesticide Formulations: Innovations and Developments. American Chemical Society, Washington, DC, 1988.Google Scholar
6. Flore, J. A. and Bukovac, M. J. 1974. Pesticide effects on the plant cuticle: 1. Response of Brassica oleracea (L.) to EPTC as indexed by epicuticular wax production. J. Am. Soc. Hort. Sci. 99:3437.CrossRefGoogle Scholar
7. Foy, C. L. 1962. Penetration and initial translocation of 2,2-dichloropropionic acid (dalapon) in individual leaves of Zea mays L. Weeds 10:3539.CrossRefGoogle Scholar
8. Furmidge, C. G. L. 1959. Physico-chemical studies on agricultural sprays. III. Variation of phytotoxicity with the chemical structure of surface-active agents. J. Sci. Food Agric. 10:419425.Google Scholar
9. Gülz, P., Scora, R. W., Müller, E., and Marner, F. 1987. Epicuticular leaf waxes of Citrus halimii Stone. J. Agric. Food Chem. 35:716720.Google Scholar
10. Guggenheim, R., Zuberbühler, E., Düggelin, M., and Harr, J. 1990. Low-temperature scanning electron microscopy and physical-chemical investigations of leaf surface characteristics. XIIth Int. Congr. Electron Microscopy, Seattle.Google Scholar
11. Helenius, A. and Simons, K. 1975. Solubilization of membranes by detergents. Biochim. Biophys. Acta 415:2979.Google Scholar
12. Holloway, P. J. 1970. Surface factors affecting the wetting of leaves. Pestic. Sci. 1:156163.Google Scholar
13. Hull, H. M., Davis, D. G., and Stolzenberg, G. E. 1982. Action of adjuvants on plant surfaces. p. 2667 in Hodgson, R. H., ed., Adjuvants for Herbicides. Weed Science Society of America, Champaign, IL.Google Scholar
14. Jansen, L. L. 1964. Surfactant enhancement of herbicide entry. Weeds 12:251255.Google Scholar
15. Jansen, L. L., Gentner, W. A., and Shaw, W. C. 1961. Effects of surfactants on the herbicidal activity of several herbicides in aqueous spray systems. Weeds 9:381405.CrossRefGoogle Scholar
16. Jeffree, C. E., Baker, E. A., and Holloway, P. J. 1975. Ultrastructure and recrystallization of plant epicuticular waxes. New Phytol. 75:539549.Google Scholar
17. Knoche, M., Noga, G., and Lenz, F. 1992. Surfactant-induced phytotoxicity: evidence for interaction with epicuticular wax fine structure. Crop Prot. 11:5156.CrossRefGoogle Scholar
18. Kuzych, I. J. and Meggitt, W. F. 1983. Alteration of epicuticular wax structure by surfactants. Micron Microsc. Acta 14:279280.Google Scholar
19. Macey, M. J. K. and Barber, H. N. 1970. Chemical genetics of wax formation on leaves of Brassica oleracea . Phytochemistry 9:1323.CrossRefGoogle Scholar
20. McWhorter, C. G. 1985. The physiological effects of adjuvants on plants. p. 141158 in Duke, S. O., ed., Weed Physiology, Volume II, Herbicide Physiology. CRC Press, Inc., Boca Raton, FL.Google Scholar
21. Muller, T., Guggenheim, R., Düggelin, M., and Lüönd, G. 1986. On-line cryopreparation and cryomicroscopy in SEM with SCU 020. p. 22332234 in Imura, H., Maruse, S., and Suzuki, T., eds., Proc. XIth Int. Congr. on Electron Microsc. Vol. 3. Kyoto, Japan.Google Scholar
22. Müller, T., Guggenheim, R., Düggelin, M., and Scheidegger, Ch. 1991. Freeze fracturing for conventional and field emission low temperature scanning electron microscopy—The scanning cryo unit SCU-020. J. Microsc. 161:7383.Google Scholar
23. Noga, G. and Bukovac, M. J. 1986. Impact of surfactants on fruit quality of ‘Schattenmorelle’ sour cherries and ‘Golden Delicious’ apples. Acta Hortic. 179:771778.Google Scholar
24. Noga, G. J., Knoche, M., Wolter, M., and Barthlott, W. 1987. Changes in leaf micromorphology induced by surfactant application. Angew. Bot. 61:521528.Google Scholar
25. Noga, G., Schmidt, S., Lenz, F. 1986. Biologische Nebenwirkungen von Netzmitteln bei Kohlrabi (Brassica oleracea Var. Gongylodes L.). Gartenbauwiss. 51:241246.Google Scholar
26. Noga, G., Wolter, M., Barthlott, W, and Petry, W. 1991. Quantitative evaluation of epicuticular wax alterations as induced by surfactant treatment. Angew. Bot. 65:239252.Google Scholar
27. Rawlinson, C. J., Muthyalu, G., and Turner, R. H. 1978. Effect of herbicides on epicuticular wax of winter oilseed rape (Brassica napus) and infection by Pyrenopeziza brassicae . Trans. Br. Mycol. Soc. 71:441451.Google Scholar
28. Read, N. D. and Jeffree, C. E. 1991. Low-temperature scanning electron microscopy: in biology. J. Micros. 61:5972.Google Scholar
29. Richard, E. P. and Slife, F. W. 1979. In vivo and in vitro characterization of the foliar entry of glyphosate in hemp dogbane (Apocynum cannabinum). Weed Sci. 27:426433.Google Scholar
30. Shafer, W. E. and Bukovac, M. J. 1988. Phytoxicity of octylphenoxyethanol (Triton-X) surfactants on selected plant species. Proc. Plant Growth Regul. Soc. Am. 1988, p. 163172.Google Scholar
31. Smith, L. W., Foy, C. L., and Bayer, D. E. 1966. Structure-activity relationships of alkylphenol ethylene oxide ether non-ionic surfactants and three water-soluble herbicides. Weed Res. 6:233242.Google Scholar
32. Stevens, P. J. G. and Baker, E. A. 1987. Factors affecting the foliar absorption and redistribution of pesticides. 1. Properties of leaf surfaces and their interactions with spray droplets. Pestic. Sci. 19:265281.Google Scholar
33. Stevens, P. J. G. and Bukovac, M. J. 1987. Studies on octylphenoxy surfactants. Part 1: Effects of oxyethylene content on properties of potential relevance to foliar absorption. Pestic. Sci. 20:1935.Google Scholar
34. Takeno, T. and Foy, C. L. 1974. Effect of polysorbate surfactants on the ultrastructure of leaf surfaces. Weed Sci. Soc. Am. Abstr. 27:92.Google Scholar
35. Tulloch, A. P. and Hoffman, L. L. 1973. Leaf wax of oats. Lipids 8:617622.Google Scholar
36. Whitehouse, P., Holloway, P. J., and Caseley, J. C. 1982. The epicuticular wax of wild oats in relation to foliar entry of the herbicides diclofop-methyl and difenzoquat. p. 315330 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds., The Plant Cuticle, Academic Press, New York.Google Scholar
37. Wolter, M., Barthlott, W., Knoche, M., and Noga, G. J. 1987. Concentration effects and regeneration of epicuticular waxes after treatment with Triton X-100 surfactant. Angew. Bot. 62:5362.Google Scholar
38. Wortmann, G. B. 1965. Elektronmikroskopische Untersuchungen der Blattoberfläche und deren Veränderung durch Pflanzenschutzmittel. Z. Pflanzenkr. (Pflanzenpathol.) Pflanzenschutz 72:641670.Google Scholar