Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:44:14.708Z Has data issue: false hasContentIssue false

Response of Diploid Watermelon to Imazosulfuron POST

Published online by Cambridge University Press:  20 January 2017

Peter J. Dittmar*
Affiliation:
Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC 27695-7609
Katherine M. Jennings
Affiliation:
Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC 27695-7609
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC 27695-7609
*
Corresponding author's E-mail: pjdittma@ncsu.edu.

Abstract

Field trials were conducted to evaluate imazosulfuron applied POST at 0.1, 0.2, 0.3, and 0.4 kg/ha to watermelon at the two- to four-leaf stage or to vines 30.5 cm long. At 7 d after treatment (DAT), crop injury to watermelon increased linearly for both growth stages as rate increased. The least injury to watermelon observed 7 DAT was 19 and 15%, respectively, for the two- to four-leaf and 30.5-cm growth stages treated with 0.01 kg/ha imazosulfuron. The 0.4 kg/ha imazosulfuron treatment caused the greatest watermelon injury (approximately 30%) at both application timings. Yield of watermelon treated with 0.1 and 0.2 kg/ha imazosulfuron applied at the two- to four-leaf and 30.5-cm stages were similar to the nontreated check (all plots were maintained weed-free). For both application timings, yield decreased linearly as imazosulfuron rate increased. The application of imazosulfuron to watermelon at the 30.5-cm stage averaged across rates resulted in less injury at 15 DAT (16%) and greater yield (92,869 kg/ha) than watermelon treated at two- to four-leaf stage averaged across rates (29%, 83,560 kg/ha). Internal fruit quality was not affected by imazosulfuron.

Estudios de campo fueron realizados para evaluar imazosulfuron POST-aplicado en dosis de 0.1, 0.2, 0.3 y 0.4 kg/ha para la sandía en las etapas de 2- a 4-hojas y a las guías de 30.5 cm. de largo. A los 7 días posteriores al tratamiento (DAT), los daños al fruto de la sandía se incrementaron linealmente en ambas etapas de crecimiento en la misma proporción en que fue incrementada la dosis. El menor daño a la sandía observado 7 días después del tratamiento (DAT), fue del 19 y 15%, respectivamente, para la etapa de 2 a 4 hojas y en la etapa de crecimiento de las guías de 30.5 cm. tratadas con una dosis de 0.01 kg/ha. El tratamiento con una dosis de 0.4 kg/ha de imazosulfuron causó el mayor daño a la sandía (aproximadamente 30%) en ambos intervalos de aplicación. El rendimiento obtenido de sandía tratada con 0.1 y 0.2 kg/ha de imazosulfuron aplicado en las etapas de 2 a 4 hojas y a las guía de 30.5 cm de longitud, fueron similares al testigo no tratado (todos los lotes fueron conservados libres de maleza). Para ambos intervalos de aplicación, el rendimiento se redujo linealmente en la misma proporción que se incrementó el imazosulfuron. La aplicación de imazosulfuron a la sandía de 30.5 cm de guía resultó en promedio con daños menores 15 días después de la aplicación (DAT) (16%) y mayor rendimiento (92869 kg/ha) en promedio que la sandía tratada en las etapas de 2 a 4 hojas (29%, 83560 kg/ha). La calidad interna de la fruta no se vio afectada por la aplicación de imazosulfuron.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Batts, R. B., Culpepper, A. S., and Lewis, K. L. 2001. Evaluation of halosulfuron in bareground watermelon culture. Proc. South. Weed Sci. Soc 54:78.Google Scholar
Boydston, R. and Felix, J. 2008. Yellow nutsedge control in potato with imazosulfuron. West. Soc. Weed Sci. Meet. Proc 61:6.Google Scholar
Buker, R. S. III, Stall, W. M., Olson, S. M., and Schilling, D. G. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with direct-seeded and transplanted watermelon (Citrullus lanatus). Weed Technol 17:751754.Google Scholar
Henry, G. M. and Sladek, B. S. 2008. Control of yellow and purple nutsedge in bermudagrass turf with V-10142. Proc. South. Weed Sci. Soc 61:125.Google Scholar
Henson, I. E. and Little, C. S. 1969. Penetration of polyethylene film by the shoots of Cyperus rotundus . Pest Artic. News 15:6466.Google Scholar
Holmes, G. J. and Kemble, J. M. 2008. Vegetable Crop Handbook for Southeastern US—2008. Lincolnshire, IL: Vance Publishing Corp. 258.Google Scholar
Johnson, W. C. III and Mullinix, B. G. Jr. 2008. Cultural control of yellow nutsedge (Cyperus esculentus) in transplanted cantaloupe (Cucumis melo) by varying application timing and type of thin-film mulches. Crop Prot 27:735739.Google Scholar
Ikeda, H., Oniki, E., and Yoshikawa, H. 1997. Activity of imazosulfuron against weeds in turf and effect on turfgrasses. J. Weed Sci. Technol 42:333339.Google Scholar
Ishida, Y., Ohta, K., Itoh, S., Nakahama, T., Miki, H., and Yoshikawa, H. 1993. Synthesis of novel herbicidal sulfonylurea compounds with imidaz [1, 2-a] pyridine moiety. J. Pestic. Sci 18:175182.Google Scholar
Lamont, W. J. Jr. 1993. Plastic mulches for the production of vegetable crops. HortTechnol 3:3539.Google Scholar
Maynard, D. N. and Hopkins, D. L. 1999. Watermelon fruit disorders. HortTechnology 9:155161.Google Scholar
Monks, D. W. and Schultheis, J. R. 1998. Critical weed-free period for large crabgrass (Digitaria sanguinalis) in transplanted watermelon (Citrullus lanatus). Weed Sci 46:530532.Google Scholar
Ohta, K., Itoh, S., Yamada, J., Masumoto, K., Yoshikawa, H., and Ishida, Y. 1993. Synthesis of herbicidal sulfonylurea compounds with imidazo [2,1-b] thiazole moiety. J. Pestic. Sci 18:183189.Google Scholar
Shrefler, J. W., Brandenberger, L. P., Webber, C. L. III, Roberts, W., Payton, M. E., and Wells, L. K. 2007. POST weed control using halosulfuron in direct-seeded watermelon. Weed Technol 21:851856.Google Scholar
Terry, E. R., Stall, W. M., Shiling, D. G., Bewick, T. A., and Kostwewicz, S. R. 1997. Smooth amaranth interference with watermelon and muskmelon production. HortScience 32:630632.Google Scholar
[USDA] U.S. Department of Agriculture–National Agricultural Statistics Service 2008. Quick Stats Melons—Watermelons. www.nass.usda.gov/QuickStats/create_Federal_All.jsp. Accessed: November 1, 2008.Google Scholar
Webster, T. M. 2005. Mulch type affects growth and tuber production of yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus). Weed Sci 53:834838.Google Scholar
Webster, T. M. 2006. Weed survey—southern states. Proc. South. Weed Sci. Soc 59:266268.Google Scholar