Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T07:44:13.072Z Has data issue: false hasContentIssue false

Photodynamic Herbicides

Published online by Cambridge University Press:  12 June 2017

G.H.N. Towers
Affiliation:
Dep. Bot., Univ. British Columbia, 6270 Univ. Blvd., Vancouver, British Columbia, Canada V6T 2B1
J. T. Arnason
Affiliation:
Dep. Biol., Univ. Ottawa, 30 Somerset E., Ottawa, Ontario, Canada K1N 6N5

Abstract

Many natural and synthetic plant compounds become toxic when irradiated by ultraviolet or visible light. These compounds may be considered for use as herbicides, remembering the requirement for light. Concurrently, methods for blocking metabolic pathways so that phototoxic intermediates accumulate and thus kill the plant also have been studied. The mechanisms of action of potentially useful plant phototoxins are described.

Type
Symposium
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aranson, T., Stein, J., Graham, E., Wat, C. K., Towers, G.H.N., and Lam, J. 1981. Biological activity to selected marine and freshwater algae of polyacetylenes from species in the Asteraceae. Can. J. Bot. 59:5458.Google Scholar
2. Bakker, J., Gommers, F. J., Nieuwenhuis, I., and Wynberg, H. 1979. Photoactivation of the nematicidal compound α-T from roots of marigolds (Tagetes species): A possible singlet oxygen role. J. Biol. Chem. 254:18411844.Google Scholar
3. Bohlmann, F., Burkhardt, T., and Zdero, C. 1973. Naturally Occurring Acetylenes. Academic Press, London.Google Scholar
4. Campbell, G. 1983. The allelopathic and herbicidal potential of alpha terthienyl. M. Sc. Thesis, Carleton University, Ottawa, Ontario, Canda.Google Scholar
5. Campbell, G., Lambert, J.D.H., Arnason, T., and Towers, G.H.N. 1982. Allelopathic properties of two naturally occurring polyacetylenes from the Asteraceae. J. Chem. Ecol. 8:961972.CrossRefGoogle Scholar
6. Daub, M. E., and Hangarter, R. P. 1983. Light induces production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol. 73:855857.Google Scholar
7. Downum, K. R., Hancock, R.E.W., and Towers, G.H.N. 1982. Mode of action of α-t on Escherichia coli: evidence for a photodynamic effect on membranes. Photochem. Photobiol. 36:517523.Google Scholar
8. Garcia, F. J., Yamamoto, E., Abramowski, Z., Downum, K., Towers, G.H.N. 1984. Comparison of the phototoxicity of α-t with that of selenium and an oxygen analog. Photochem. Photobiol. 101:197969.Google Scholar
9. Gommers, F. J. 1973. in Nematicidal principles in compositae. Veenan & Zonenbv, Wageningen, The Netherlands.Google Scholar
10. Granick, S., and Mauzerall, D. 1961. Metabolism of heme and cholorophyll. p. 525615 in Greenberg, D. M., ed. Metabolic-Pathways, Academic Press, New York.Google Scholar
11. Hopf, F. R., and Whitten, D. G. 1978. Chemical transformations involving photoexcited porphyrins and metalloporphyrins. p. 161 in Dolphin, D., ed. The Porphyrins, Vol. 2. Academic Press, New York.Google Scholar
12. Jitsukawa, K., Suizu, R., and Hidano, A. 1984. Chlorella photosensitization–new phytophotodermatosis. Int. J. Dermatol., 23:263268.Google Scholar
13. Knox, J. P., and Dodge, A. D. 1985. Isolation and activity of the photodynamic pigment hypericin. Plant Cell Environ. 8:1925.Google Scholar
14. Kobayashi, A., Morimoto, S., Shibata, Y., Yamashita, K., and Numata, M. 1980. Cis polyacetylenes as allelopathic substances in dominants in early stages of secondary succession. J. Chem. Ecol. 6:119131.CrossRefGoogle Scholar
15. Lousbert, R.J.J., Weiss, U., Salemink, C. A., Arnone, L., Merini, L., and Massini, G. 1971. The structure of cercosporin, a naturally occurring quinone. Chem. Comm. 22:14631464.Google Scholar
16. Lydon, J., and Duke, S. O. 1988. Porphyrin synthesis is required for photobleaching activity of p-nitro substituted diphenyl ether herbicides. Pestic. Biochem. Physiol. 31:7483.Google Scholar
17. MacRae, W. D., Irwing, D.A.J., Bisalputra, T., and Towers, G.H.N. 1980. Membrane lesions in human erythrocytes induced by the naturally occuring compounds α-t and PHT. Photobiochem. Photobiophys. 15:309318.Google Scholar
18. Macri, F., and Vianello, A. 1979. Photodynamic activity of cercosporin in plant tissues. Plant Cell Environ. 2:267271.CrossRefGoogle Scholar
19. McLachlan, D., Aranson, J. T., and Lam, J. 1984. The role of O2 in photosensitizations by naturally occurring acetylenes. Photochem. Photobiol. 39:117182.Google Scholar
20. McRae, D. G., Yamamoto, E., and Towers, G.H.N. 1985. The mode of action of polyacetylenes and thiophene photosensitizers on liposome permeability to glucose. Biochem. Biophys. Acta. 821:488496.Google Scholar
21. McRae, D., Yamamoto, E., and Towers, G.H.N. 1986. Free radicals detected by ESR from PHT in liposomes irradiated by near UV. Photochem. Photobiol. 45:345352.Google Scholar
22. Muir, A. D., Majak, W., Balza, F., and Towers, G.H.N. 1987. A search for the allelopathic agents in diffuse knapweed. Am. Chem. Soc. Symp. Ser 330:238246.Google Scholar
23. Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J., and Wu, S. M. 1984. Photodynamic herbicides: 1. concept and phenominology. Enzyme Microbiol. Technol. 6:390401.Google Scholar
24. Rebeiz, C. A., Montazer-Zouhoor, A., Mayasich, J. M., Tripathy, B. C., Wu, S. M., and Rebeiz, C. C. 1987. Photodynamic herbicides and their chlorophyll biosynthesis modulators. Am. Chem. Soc. Symp. Ser. 339:295328.Google Scholar
25. Shain, L., and Franich, R. A. 1981. Induction of Dothistroma blight symptoms with dothistromin. Plant Pathol. 19:4955.Google Scholar
26. Sinclair, J. and Arnason, T. 1982. The effect of alpha terthienyl on photosynthesis. Can. J. Bot. 60:25652569.Google Scholar
27. Tang, C. S., and Wat, C. K., and Towers, G.H.N. 1986. Thiophenes and benzofurans in undisturbed rhisosphere of Tagetes patula L. Plant Soil 98:9397.Google Scholar
28. Tang, C. S., and Young, C. 1982. Collection and ifentification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Aemarthria altissima). Plant Physiol. 69:155160.Google Scholar
29. Towers, G.H.N. 1984. Interactions of light with phytochemicals in some natural and novel systems. Can. J. Bot. 62:29002911.Google Scholar
30. Weir, D., Scaiano, J. C., Arnason, J. T., and Evans, C. 1984. Photochemistry of the phototoxic polyacetylene phenylheptutrigne. Photochem. Photobiol. 42:223230.Google Scholar
31. Yamamoto, E., MacRae, W. D., Garcia, F. J., and Towers, G.H.N. 1984. Photodynamic hemolysis caused by α-t. Planta Medica 50:124127.CrossRefGoogle Scholar
32. Yamazaki, S., Okuba, A., Akiyama, Y., and Fuwa, K. 1975. Cercosporin a novel photodynamic pigment isolated from Cerdospora kikuchii . Agric. Biol. Chem. 39:287289.Google Scholar
33. Youngman, R. J., and Elstner, E. F. 1984. Photodynaimc and reductive mechanisms of oxygen activation by the fungal phytotoxins, cercosporin and dothistromin. p. 501507 in Bors, W., Saran, M., and Tait, D., eds. Oxygen Radicals in Chemistry and Biology. Walter de Gruyter, New York.Google Scholar