Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:47:08.011Z Has data issue: false hasContentIssue false

Mobility Assessment of Agrichemicals: Current Laboratory Methodology and Suggestions for Future Directions

Published online by Cambridge University Press:  12 June 2017

Cheryl B. Cleveland*
Affiliation:
Environmental Fate Group, DowElanco, 9330 Zionsville Rd, Indianapolis, IN 46268-1053

Abstract

The current state of registration requirements for mobility assessments of pesticides is described and the various uses for mobility estimates are outlined. A survey of recent literature on mobility assessments is presented along with a suggestion for a refocus on Kd rather than KF. A proposal for a different, yet standard, more efficient approach as a replacement for the current requirements is outlined. The suggested approach could fit well within a registration package or a limited research budget as well as provide more information for model input.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alva, A. K. and Singh, M. 1991. Sorption-desorption of herbicides in soil as influenced by electrolyte cations and ionic strength. J. Environ. Sci. Health B 26:147164.Google Scholar
2. Ahlrichs, J. L. 1972. The soil environment. p. 346 in Goring, C. L. and Hamaker, J. W., eds. Organic Chemicals in the Soil Environment. Marcel Dekker, Inc., New York.Google Scholar
3. Blair, A. M., Martin, T. D., Walker, A., and Welch, S. J. 1990. Measurement and prediction of isoproturon movement and persistence in three soils. Crop Prot. 9:289294.Google Scholar
4. Boesten, J.J.T.I. 1991. Sensitivity analysis of a mathematical model for pesticide leaching to groundwater, Pestic. Sci. 31:375388.Google Scholar
5. Boesten, J.J.T.I. and van der Pas, L.J.T. 1988. Modeling adsorption-desorption kinetics of pesticides in a soil suspension. Soil Sci. 146:221231.Google Scholar
6. Bowman, B. T. 1982. Conversion of Freundlich adsorption K values to the mole traction format and the use of SY values to express relative adsorption of pesticides. Soil Soc. Am. J. 46:740743.Google Scholar
7. Bowman, B. T. and Sans, W. W. 1985. Partitioning behavior of insecticides in soil-water systems: II, Desorption hysteresis effects. J. Environ. Qual. 14:270273.Google Scholar
8. Cervelli, S., Perna, A., and Ekler, Z. S., 1989. A simple model to evaluate herbicide fate in the air-water-soil system. Agric. Ecosystems Environ. 27:523529.Google Scholar
9. Cleveland, C. B., Ostrander, J. A., and Miller, J. R. 1993. Laboratory mobility assessments of XDE-565 and metabolites. Internal report of DowElanco.Google Scholar
10. Davis, J. W. 1993. Physico-chemical factors influencing ethyleneamine sorption to soil. Environ. Toxic. Chem. 12:2735.Google Scholar
11. Fontaine, D. D., Lehmann, R. G., and Miller, J. R. 1991. Soil adsorption of neutral and anionic forms of a sulfonamide herbicide, flumetsulam. J. Environ. Qual. 20:759762.Google Scholar
12. Freundlich, H. 1926. Colloid and Capillary Chemistry. E. P Dutton and Company, Inc., New York. 883 p.Google Scholar
13. Ghorayshi, M. and Bergstrom, L. 1991. Equilibrium studies of the adsorption of dichlorprop on three Swedish soil profiles. Swedish J. Agric. Res. 21:157163.Google Scholar
14. Green, R. E. and Karickhoff, S. W. 1990. Chapter 4: Sorption estimates for modeling, p. 79100 in Pesticides in the Soil Environment. SSSA Book series, no. 2., Soil Science Society of America, Madison, USA.Google Scholar
15. Gustafson, D. I. 1989. Groundwater ubiquity score: A simple method for assessing pesticide leachability, Envir. Tox. Chem. 8:339357.Google Scholar
16. Hamaker, J. W. and Thompson, J. W. 1972. Adsorption. p. 49143 in Goring, C. L. and Hamaker, J. W. eds. Organic Chemicals in the Soil Environment. Marcel Dekker, Inc., New York.Google Scholar
17. Hitch, R. K., et al. 1982. Pesticide Assessment Guidelines, Subdivision N—Chemistry: Environmental Fate. U.S. Environmental Protection Agency, Office of Pesticide and Toxic Substances, Washington, D.C. 108 p.Google Scholar
18. Hutson, J. L. and Wagenet, R. J. 1992. LEACHM, Leaching Estimation and Chemistry Model, Version 3. Cornell University, Ithaca, New York.Google Scholar
19. Johnson, R. M. and Sims, J. T. 1993. Influence of surface and subsoil properties on herbicide sorption by atlantic coastal plain soils. Soil Sci. 155:339348.Google Scholar
20. Jury, W. A., Focht, D. D., and Farmer, W. J. 1987. Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual. 16:42428.Google Scholar
21. Kawamoto, K. and Urano, K. 1989. Parameters for predicting fate of organochlorine pesticides in the environment II: Adsorption constant to soil. Chemosphere 19:12231232.Google Scholar
22. Klein, M. 1993. PELMO: Pesticide Leaching Model, Version 1.5. Fraunhofer Institut fuer Umweltchemie und Oekotoxicologie, Schmalenberg, Germany.Google Scholar
23. Kookana, R. S., Gerritse, R. G., and Aylmore, L.A.G. 1992. A method for studying nonequilbrium sorption during transport of pesticides in soil. Soil Sci. 154:344349.Google Scholar
24. Kookana, R. S., Gerritse, R. G., and Aylmore, L.A.G. 1990. Effect of organic cosolvent on adsorption and desorption of linuron and simazine in soil. Aust. J. Soil Res. 28:717726.Google Scholar
25. Kookana, R. S., Aylmore, L.A.G. and Gerritse, R. G. 1992. Time-dependent sorption of pesticides during transport in soils. Soil Sci. 154:214225.Google Scholar
26. Kozak, J., Valla, M., Prokopec, O., and Vacek, O. 1992. Prediction of the role of soil organic matter and some other soil characteristics in herbicide adsorption. p. 165–9 in Kubat, J., ed. Humus, Its Structure and Role in Agriculture and Environment. Elsevier Science Publishers B. V., New York.Google Scholar
27. Laskowski, D. A., Tillotson, P. A., Fontaine, D. D., and Martin, E. J. 1990. Probability modeling. Phil. Trans. Roy. Soc. Lond. B. 329:383389.Google Scholar
28. Lehmann, R. G., Miller, J. R., Fontaine, D. D., Laskowski, D. A., Hunter, J. H., and Cordes, R. C., 1992. Degradation of a sulfonamide herbicide as a function of soil sorption. Weed Res. 32:197205.Google Scholar
29. Malik, N. and Drennan, D.S.H. 1989. Adsorption-desorption equilibria of carbon-14 labeled fluridone at low solution concentrations and soil water ratios. Can. J. Soil Sci. 69:567578.Google Scholar
30. McCall, P. J. and Agin, G. L. 1985. Desorption kinetics of picloram as affected by residence time in the soil, Environ. Toxic. Chem. 4:3744.Google Scholar
31. Mullins, J. A., Carsel, R. F., Scarbrough, J. E., and Ivery, A. M. 1993, PRZM-2, A Model for Predicting Pesticide Fate in the Crop and Unsaturated Soil Zone. User's Manual for Release 2.0. USEPA/600/R93/046. U.S. Environmental Protection Agency, Athens.Google Scholar
32. O'Dell, J. D. Wolt, J. D., and Jardine, P. M. 1992. Transport of imazethapyr in undistributed soil columns. Soil Sci. Am. J. 56:17111715.CrossRefGoogle Scholar
33. Ogram, A. V., Jessup, R. E., Ou, L. T., and Rao, P.S.C. 1985. Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl. Environ. Microbiol. 49:582587.Google Scholar
34. Pignatello, J. J., Ferrandino, F. J., and Huang, L. Q. 1993. Elution of aged and freshly added herbicides from a soil. Environ. Sci. Technol. 27:15631571.Google Scholar
35. Pusino, A., Liu, W., Fang, Z., and Gessa, C. 1993. Effect of metal binding ability on the adsorption of acifluoren on soil. J. Agric. Food Chem. 41:502505.Google Scholar
36. Rao, P.S.C. and Davidson, J. M. 1980. Estimation of pesticide retention and transformation parameters required nonpoint source pollution models. p. 2367 in Overcash, M. R. and Davidson, J. M., eds. Environmental Impact of Nonpoint Source Pollution. Ann Arbor Sci. Publ., Ann Arbor, MI.Google Scholar
37. Schwarzenbach, R. P. and Westall, J. 1981. Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ. Sci. Technol. 15:13601367.Google Scholar
38. Scribner, L. S., Benzing, T. R., Sun, S., and Boyd, S. A. 1992. Desorption and bioavailability of aged simazine residues in soil from a continuous corn field. J. Environ. Qual. 21:115120,Google Scholar
39. Steen, W. C., Paris, D. F., and Baughman, G. L. 1980. Effects of sediment sorption on microbial degradation of toxic substances. p. 477482 in Baker, R. A., ed. Contaminants and Sediments. Vol. 1. Ann Arbor Science Publ., Ann Arbor, MI.Google Scholar
40. Shelton, D. R. and Parkin, T. B. 1991. Effect of moisture on sorption and biodegradation of carbofuran in soil. J. Agric. Food Chem. 39:20632068.Google Scholar
41. Stehouwer, R. C., Dick, W. A., and Traina, S. J. 1993. Characteristics of earthworm burrow lining affecting atrazine sorption, J. Environ. Qual. 22:181185.Google Scholar
42. Somsundaram, L., Jayachandran, K., Kruger, E. L., Racke, K. D., Moorman, T. B., Dvoraka, T., and Coats, J. R. 1993. Degradation of isazofos in the soil environment. J. Agric. Food. Chem. 41:313318.Google Scholar
43. Sukop, H. and Cogger, C. G. 1992. Adsorption of carbofuran, metalaxyl, and simazine: KOC evaluation and relation to soil transport. J. Environ. Sci. Health. B 27:565590.CrossRefGoogle Scholar
44. Swoboda, A. R. and Thomas, G. W. 1968. Movement of parathion in soil columns. J. Agric. Food Chem. 16:923927.CrossRefGoogle Scholar
45. United States Environmental Protection Agency. 1993. Pesticide Reregistration Rejection Rate Analysis: Environmental Fate, EPA. 738R-93-010:128131.Google Scholar
46. von Oepen, B., Kordel, W., Klein, W., and Schuurmann, G. 1991. Predictive QSPR models for estimating soil sorption coefficients: Potential and limitations based on dominating processes. Sci. Tot. Environ. 109:343354.Google Scholar
47. Welhouse, G. J. and Bleam, W. F. 1993. Cooperative hydrogen bonding of atrazine. Environ. Sci. and Technol. 27:500505.Google Scholar
48. Wybieralski, J. 1992. The formulation effect of propoxur on leaching as a function of soil properties. Sci. Tot. Environ. 123:513518.Google Scholar
49. Yon, D., Osbourne, K., McGibbon, A., Baloch, R., and Lacey, R. 1992. The environmental distribution of hexaflurmuron. Proc. Brighton Crop Prot. Conf. Pest Diseases 7C-24.Google Scholar