Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:55:49.727Z Has data issue: false hasContentIssue false

Goatsrue (Galega officinalis) Response to Herbicides

Published online by Cambridge University Press:  20 January 2017

Michelle Oldham
Affiliation:
Plants, Soils, and Climate Department, Utah State University, 4820 Old Main Hill, Logan, UT 84322-4820
Corey V. Ransom*
Affiliation:
Plants, Soils, and Climate Department, Utah State University, 4820 Old Main Hill, Logan, UT 84322-4820
*
Corresponding author's E-mail: corey.ransom@usu.edu

Abstract

Goatsrue response to eight herbicide treatments was evaluated in greenhouse and field trials. Herbicides tested on goatsrue grown from seed in the greenhouse included 2,4-D amine, dicamba, chlorsulfuron, picloram, imazapyr, imazamox, aminopyralid, and triclopyr. Each herbicide was applied at rates of 0.125×, 0.25×, 0.5×, 1.0×, and 2.0×, where X is equal to the labeled rate. Goatsrue was most sensitive to the acetolactate synthase inhibitors chlorsulfuron and imazapyr, with 50% inhibition values of 0.07× (3.7g ai ha−1) and 0.16× (90 g ai ha−1) respectively. Goatsrue did not respond to increasing 2,4-D and imazamox rates. Herbicides evaluated in the greenhouse were also tested at two field sites (Smithfield and Amalga, UT), except imazamox, which was replaced by metsulfuron. Field studies gave some varying results, but overall showed that chlorsulfuron, metsulfuron, aminopyralid, and picloram gave at least 93% control at Smithfield, and 89% control at Amalga 24 mo after treatment (MAT). Treatments of chlorsulfuron, metsulfuron, aminopyralid, and picloram were also effective at increasing perennial grass cover at Smithfield 24 MAT. All treatments at Smithfield decreased seedling goatsrue cover, whereas only aminopyralid and picloram decreased seedling cover at Amlaga 11 MAT.

La respuesta de Galega officinalis a ocho tratamientos de herbicidas fue evaluada en estudios de invernadero y de campo. Los herbicidas probados en G. officinalis proveniente de semillas de plantas cultivadas en invernadero, incluyeron; 2,4-D amina, dicamba, clorsulfurón, picloram, imazapyr, imazamox, aminopyralid, y triclopyr. Cada uno se aplicó en dosis de 0.125×, 0.25×, 0.5×, 1.0×, y 2.0×, donde X es igual a la dosis recomendada en la etiqueta. La G. officinalis fue más sensible a los inhibidores de ALS clorsulfurón e imazapyr, con valores I50 de 0.07× (3.7 g ia/ha) y 0.16× (90 g ia/ha), respectivamente. La G. officinalis no respondió al incremento de las dosis de 2,4-D e imazamox. Los herbicidas evaluados en invernadero fueron también probados en dos sitios (Smithfield y Amalga, UT) con excepción de imazamox, el cual fue substituido por metsulfurón. Los estudios de campo proporcionaron algunos resultados inconsistentes, pero en general mostraron que clorsulfurón, metsulfurón, aminopyralid y picloram, lograron al menos 93% de control en Smithfield, y 89% de control en Amalga, 24 meses después del tratamiento (MAT). Los tratamientos de clorsulfurón, metsulfurón, aminopyralid y picloram, también fueron efectivos al incrementar la cobertura del zacate perenne en Smithfield, 24 MAT. Todos los tratamientos en esta última localidad, disminuyeron la cobertura de las plántulas de G. officinalis, mientras que solamente el aminopyralid y el picloram provocaron el mismo resultado en Amalga, 11 MAT.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: 4237 Knollvale Drive, Colorado Springs, CO 80922.

References

Literature Cited

Conn, J. S. and Seefelt, S. S. 2009. Invasive white sweetclover (Melilotus officinalis) control with herbicides, cutting, and flaming. Invasive Plant Sci. Manag 2:270277.Google Scholar
DiTomaso, J. M., Kyser, G. B., Miller, J. R., Garcia, S., Smith, R. F., Nader, G., Connor, J. M., and Orloff, S. B. 2006. Integrating prescribed burning and clopyralid for the management of yellow starthistle (Centaurea solstitialis). Weed Sci. 54:757767.Google Scholar
Enloe, S. F. and Kniss, A. R. 2009. Does a diflufenzopyr plus dicamba premix synergize Russian knapweed (Acroptilon repens) control with auxinic herbicides? Invasive Plant Sci. Manag 2:318323.Google Scholar
Evans, J. O. 1984. Goatsrue eradication—a realistic goal. Utah Sci 45:911.Google Scholar
Evans, J. O. and Ashcroft, M. L. 1982. Goatsrue. Utah Agric. Exp. Sta. Res. Rep. No. 79. Logan, Utah Utah State University. 5 p.Google Scholar
Evans, J. O., Dalley, C. D., and Larson, M. R. 1997. Prospects and challenges for goatsrue eradication. Proc. West. Soc. Weed Sci 50:2526.Google Scholar
Farris, R. L. and Murray, D. S. 2009. Control of seedling sericea lespedeza (Lespedeza cuneata) with herbicides. Invasive Plant Sci. Manag 2:337344.Google Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. 2nd ed. New York John Wiley. Pp. 421422.Google Scholar
Gresham, A. C. J. and Booth, K. 1991. Poisoning of sheep by goat's rue. Vet. Rec.: J. Br. Vet. Assoc 129:197198.Google Scholar
Keeler, R. F., Baker, D. C., and Evans, J. O. 1988. Individual animal susceptibility and its relationship to induced adaptation or tolerance in sheep to Galega officinalis . Vet. Hum. Toxicol 30:420423.Google Scholar
Keeler, R. F., Baker, D. C., and Panter, K. E. 1992. Concentration of galegine in Verbesina encelioides and Galega officinalis and the toxic and pathologic effects induced by the plants. J. Env. Pathol. Toxicol. Oncol 11:7581.Google Scholar
Keeler, R. F., Johnson, A. E., Stuart, L. D., and Evans, J. O. 1986. Toxicosis from and possible adaptation to Galega officinalis in sheep and the relationship to Verbesina encelioides toxicosis. Vet. Hum. Toxicol 28:309315.Google Scholar
Mead, R., Curnow, R. N., and Hasted, A. M. 2003. Statistical Methods in Agriculture and Experimental Biology. 3rd ed. Boca Raton, FL Chapman and Hall/CRC. Pp. 397399.Google Scholar
Oehrens, E. and Gonzalez, S. 1975. Introduction of Uromyces galegae (Opiz) as a factor in the biological control of common goatsrue (Galega officinalis L.). Agro Sur 3:8791.Google Scholar
Patterson, D. T. 1992. Effect of temperature and photoperiod on growth and reproductive development of goatsrue. J. Range Manag 45:449453.Google Scholar
Puyt, J. D., Faliu, L., Keck, G., Gedfrain, J. C., Pinault, L., and Tainturier, D. 1981. Fatal poisoning of sheep by Galega officinalis (French honeysuckle). Vet. Hum. Toxicol 23:410412.Google Scholar
Ralphs, M. H., Mickelsen, L. V., Turner, D. L., and Nielsen, D. B. 1988. Control of white locoweed (Oxytropis sericea). 1988. Weed Sci. 36:353358.Google Scholar
Seefelt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218225.Google Scholar
Tingey, D. C. 1971. Goatsrue, a potential forage crop, turned out to be a weed. Utah Sci 32:2528.Google Scholar
United States Department of Agriculture and Animal and Plant Heath Inspection Service 2008. Plants Database, Plants Profile. http://plants.usda.gov/java/nameSearch?keywordquery=galega+officinalis&mode=sciname. Accessed: September 2, 2008.Google Scholar
Westerman, R. B., Murray, D. S., and Castner, E. P. 1993. Hogpotato (Hoffmanseggia glauca) control with herbicides and rotational crop response. Weed Technol. 7:650656.Google Scholar