Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T13:05:23.009Z Has data issue: false hasContentIssue false

Cured Dairy Compost Influence on Weed Competition and on ‘Snowden' Potato Yield

Published online by Cambridge University Press:  20 January 2017

Alexander J. Lindsey*
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
Karen A. Renner
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
Wesley J. Everman
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: lindse38@msu.edu

Abstract

Potatoes are an important global food crop typically produced in high-input systems in temperate zones. Growers that have access to compost may use it to improve soil health and increase tuber yields, but compost may also increase weed competition by increasing early-season water availability and weed growth. A field study at the Michigan State University Montcalm Research farm in 2010 and 2011 investigated the impact of compost on weed competition in potato. Potatoes were grown in field plots with 0, 4,000, or 8,000 kg carbon (C) ha−1 of compost under weed-free conditions, and in competition with common lambsquarters, giant foxtail, and hairy nightshade. Compost did not increase biomass or seed production of any weed species. Giant foxtail and hairy nightshade at 5.3 plants per meter of row reduced potato yield by 20%; common lambsquarters reduced yield by 45%. The yield reduction by giant foxtail and hairy nightshade was due to a decrease in tuber bulking, whereas yield reductions from common lambsquarters were a result of lower tuber set and bulking. Potato yield increased 5 to 15% in compost compared to non-compost treatments; tuber specific gravity decreased by 0.3% in composted treatments. Across weed densities, elevated soil potassium levels in the 8,000 kg C ha−1 composted treatment may have increased potato yield and decreased tuber specific gravity.

La papa es un cultivo de importancia a nivel global que es típicamente producido en sistemas con altos insumos en zonas templadas. Los productores que tienen acceso a compost podrían usarlo para mejorar la salud del suelo e incrementar los rendimientos de tubérculos, pero el compost podría también aumentar la competencia de malezas al incrementar la disponibilidad de agua y el crecimiento de las malezas temprano durante la temporada. Un estudio de campo en la Finca de Investigación Montcalm de la Universidad Estatal de Michigan investigó el impacto del compost sobre la competencia de las malezas con la papa. Se sembraron papas en parcelas de campo con 0, 4,000, ó 8,000 kg carbon (C) ha−1 de compost bajo condiciones libres de malezas, y en competencia con Chenopodium album, Setaria faberi y Solanum physalifolium. El compost no incrementó la biomasa o producción de semillas de ninguna de las especies de malezas. S. faberi y S. physalifolium a 5.3 plantas por metro de cultivo redujeron el rendimiento de la papa en 20%. C. album redujo el rendimiento en 45%. La reducción del rendimiento causada por S. faberi y S. physalifolium se debió a la reducción en crecimiento del tubérculo, mientras que las reducciones del rendimiento debido a C. album fueron el resultado de una menor producción y crecimiento de tubérculos. El rendimiento de la papa incrementó 5 a 15% en compost al compararse con tratamientos sin compost; la gravedad específica del tubérculo disminuyó en 0.3% en los tratamientos con compost. A través de todas las densidades de malezas, los niveles elevados de potasio en el suelo en el tratamiento con compost con 8,000 kg C ha−1 podrían haber incrementado el rendimiento de la papa y disminuido la gravedad específica de los tubérculos.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amijee, F., Tinker, P. B., and Stribley, D. P. 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol. 111:435446.CrossRefGoogle ScholarPubMed
Amisi, K. J. and Doohan, D. 2010. Redroot pigweed (Amaranthus retroflexus) seedling emergence and growth in soils amended with composted dairy cattle manure and fresh dairy cattle manure under greenhouse conditions. Weed Technol. 24:7175.CrossRefGoogle Scholar
Blackshaw, R. E., Molnar, L. J., and Larney, F. J. 2005. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot. 24:971980.CrossRefGoogle Scholar
Brundrett, M., Bougher, N., Dell, B., Grove, T., and Malajczuk, N. 1996. Working with Mycorrhizas in Forestry and Agriculture. Monograph 32. Canberra Australian Centere for International Agricultural Research. 374 p.Google Scholar
Ciuberkis, S., Bernotas, S., Raudonius, S., and Felix, J. 2007. Effect of weed emergence time and intervals of weed and crop competition on potato yield. Weed Technol. 21:612617.CrossRefGoogle Scholar
Douds, D. D. Jr., Galvez, L., Franke-Snyder, M., Reider, C., and Drinkwater, L. E. 1997. Effect of compost addition and crop rotation point upon VAM fungi. Agric. Ecosyst. Environ. 65:257266.CrossRefGoogle Scholar
Edmonds, J. M. 1986. Biosystematics of Solanum sarrachoides Sendttner and S. physalifolium Rusby (S. nitidibaccatum Bitter). Bot. J. Linn. Soc. 92:138.CrossRefGoogle Scholar
Entry, J. A., Strausbaugh, C. A., and Sojka, R. E. 2005. Compost amendments decrease Verticillium dahliae infection on potato. Compost Sci. Util. 13:4349.CrossRefGoogle Scholar
Felix, J., Ivany, J., Kegode, G. O., and Doohan, D. 2009. Timing potato cultivation using the WeedCast model. Weed Sci. 57:8793.CrossRefGoogle Scholar
Gale, E. S., Sullivan, D. M., Cogger, C. G., Bary, A. I., Hemphill, D. D., and Myhre, E. A. 2006. Estimating plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 35:23212332.CrossRefGoogle ScholarPubMed
Gallandt, E. R., Liebman, M., Corson, S., Porter, G. A., and Ullrich, S. D. 1998. Effects of pest and soil management systems on weed dynamics in potato. Weed Sci. 46:238248.CrossRefGoogle Scholar
Gent, M.P.N., Elmer, W. H., Stoner, K. A., Ferrandino, F. J., and LaMondia, J. A. 1998. Growth, yield and nutrition of potato in fumigated or nonfumigated soil amended with spent mushroom compost and straw mulch. Compost Sci. Util. 6:4556.CrossRefGoogle Scholar
Gonzales, R. F. and Cooperband, L. R. 2002. Compost effects on soil physical properties and field nursery production. Compost Sci. Util. 10:226237.CrossRefGoogle Scholar
Grace, C. and Stribley, D. P. 1991. A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol. Res. 95:11601162.CrossRefGoogle Scholar
Grewal, J. S. and Trehan, S. P. 1993. Phosphorus and potassium nutrition of potato. Pages 261297 in Chadha, K. L. and Grewal, J. S., eds. Advances in Horticulture. Volume 7 – Potato. New Delhi Malhotra Publishing House.Google Scholar
Guenthner, J. F. and Schotzko, R. T. 2008. Economics of potato plant health. Pages 1522 in Johnson, D. A., ed. Potato Health Management. 2nd ed. St. Paul The American Phytopathological Society.Google Scholar
Hartz, T. K., Mitchell, J. P., and Giannini, C. 2000. Nitrogen and carbon mineralization dynamics of manures and composts. HortScience. 35:209212.CrossRefGoogle Scholar
Hopkins, B. G., Stark, J. C., Westermann, D. T., and Ellsworth, J. W. 2003. Nutrient management. Pages 115134 in Stark, J. C. and Love, S. L., eds. Potato Production Systems. Moscow Educational Communications, University of Idaho.Google Scholar
Hutchinson, P.J.S., Beutler, B. R., and Farr, J. 2011. Hairy nightshade (Solanum sarrachoides) competition with two potato varieties. Weed Sci. 59:3742.CrossRefGoogle Scholar
Kanzikwera, C. R., Tenywa, J. S., Osiru, D. S. O., Adipala, E., and Bhagsari, A. S. 2001. Interactive effect of nitrogen and potassium on dry matter and nutrient partitioning in true potato seed mother plants. Afr. Crop Sci. J. 9:127146.CrossRefGoogle Scholar
Kleinhenz, M. D. and Cardina, J. 2003. Compost application effects on weed populations and crop yield and quality in three early-maturing, organically managed potato (Solanum tuberosum) cultivars. Acta Hort. (ISHS) 619:337343.CrossRefGoogle Scholar
Laboski, C.A.M. and Kelling, K. A. 2007. Influence of fertilizer management and soil fertility on tuber specific gravity: a review. Amer. J. Potato Res. 84:283290.CrossRefGoogle Scholar
Lal, R. 1993. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 27:18.CrossRefGoogle Scholar
LaMondia, J. A., Gent, M. P. N., Ferrandino, F. J., Elmer, W. H., and Stoner, K. A. 1999. Effect of compost amendment or straw mulch on potato early dying disease. Plant Dis. 83:361366.CrossRefGoogle ScholarPubMed
Liebman, M., Menalled, F. D., Buhler, D. D., Richard, T. L., Sundberg, D. N., Cambardella, C. A., and Kohler, K. A. 2004. Impacts of composted swine manure on weed and corn nutrient uptake, growth, and seed production. Weed Sci. 52:365375.CrossRefGoogle Scholar
Magdoff, F. and van Es, H. 2000. Why is organic matter so important?. Pages 2132 in Magdoff, F. and van Es, H., eds. Building Soils for Better Crops. 2nd ed. Burlington, VT Sustainable Agriculture Publications.Google Scholar
McDole, R. E., Stallknecht, G. F., Dwelle, R. B., and Pavek, J. J. 1978. Response of four potato varieties to potassium fertilization in a seed growing area of eastern Idaho. Am. Potato J. 55:495504.CrossRefGoogle Scholar
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., and Swan, J. A. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115:495501.CrossRefGoogle ScholarPubMed
Menalled, F. D., Buhler, D. D., and Liebman, M. 2005a. Composted swine manure effects on germination and early growth of crop and weed species under greenhouse conditions. Weed Technol. 19:784789.CrossRefGoogle Scholar
Menalled, F. D., Kohler, K. A., Buhler, D. D., and Liebman, M. 2005b. Effects of composted swine manure on weed seedbank. Agric. Ecosyst. Environ. 111:6369.CrossRefGoogle Scholar
Menalled, F. D., Liebman, M., and Buhler, D. D. 2004. Impact of composted swine manure and tillage on common waterhemp (Amaranthus rudis) competition with soybean. Weed Sci. 52:605613.CrossRefGoogle Scholar
Miller, J. S. and Hopkins, B. G. 2008. Checklist for a holistic potato health management plan. Pages 710 in Johnson, D. A., ed. Potato Health Management. 2nd ed. St. Paul The American Phytopathological Society.Google Scholar
Miller, M. H. 2000. Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Can. J. Plant Sci. 80:4752.CrossRefGoogle Scholar
Nelson, D. C. and Thoreson, M. C. 1981. Competition between potatoes (Solanum tuberosum) and weeds. Weed Sci. 29:672677.CrossRefGoogle Scholar
Nyiraneza, J. and Snapp, S. 2007. Integrated management of inorganic and organic nitrogen and efficiency in potato systems. Soil Sci. Soc. Am. J. 71:15081515.CrossRefGoogle Scholar
Ouedraogo, E., Mando, A., and Zombre, N. P. 2001. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric. Ecosyst. Environ. 84:259266.CrossRefGoogle Scholar
Pavlista, A. D. 2008. Sulfur and marketable yield of potato. Pages 171196 in Jez, J., ed. Sulfur: A Missing Link between Soils, Crops, and Nutrition. Agron. Monograph 50. Madison: ASA-CSSA-SSSA.Google Scholar
Petersen, S. O., Henriksen, K., Mortensen, G. K., Krogh, P. H., Brandt, K. K., Sorensen, J., Madsen, T., Petersen, J., and Gron, C. 2003. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Tillage Res. 72:139152.CrossRefGoogle Scholar
Porter, G. A., Opena, G. B., Bradbury, W. B., McBurnie, J. C., and Sisson, J. A. 1999. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron. J. 91:416425.Google Scholar
Rigane, H. and Medhioub, K. 2011. Cocomposting of olive mill wastewater with manure and agro-industrial wastes. Compost Sci. Util. 19:129134.CrossRefGoogle Scholar
Rosen, C. J. and Bierman, P. M. 2005. Nutrient management for fruit and vegetable crop production: Using manure and compost as nutrient sources for vegetable crops. St. Paul The University of Minnesota Extension. 12 p.Google Scholar
Ryan, M. H. and Graham, J. H. 2002. Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil. 244:263271.CrossRefGoogle Scholar
Salem, M. A., Al-Zayadneh, W., and Jaleel, C. A. 2010. Effects of compost interactions on the alterations in mineral biochemistry, growth, tuber quality and production of Solanum tuberosum . Front. Agric. China. 4:170174.CrossRefGoogle Scholar
Sharma, U. C. and Arora, B. R. 1987. Effect of nitrogen, phosphorus and potassium application on yield of potato tubers (Solanum tuberosum L.). J. Agr. Sci. 108:321329.Google Scholar
Spicer, P. B. and Dionne, L. A. 1961. Use of gibberellins to hasten germination of Solanum seed. Nature. 189:327328.CrossRefGoogle Scholar
Stark, J. and Westermann, D. 2008. Managing potato fertility. Pages 5566 in Johnson, D. A., ed. Potato Health Management. 2nd ed. St. Paul The American Phytopathological Society.Google Scholar
Tawfik, A. A. 2001. Potassium and calcium nutrition improves potato production in drip-irrigated sandy soil. Afr. Crop Sci. J. 9:147155.CrossRefGoogle Scholar
Thingstrup, I., Rubaek, G., Sibbeson, E., and Jakobsen, I. 1998. Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high P levels in the field. Plant Soil. 203:3746.CrossRefGoogle Scholar
[USDA-NASS] U.S. Department of Agricuture – National Agricultural Statistics Service. 2011. http://www.nass.usda.gov/Statistics_by_Subject/result.php?0A31F480-595D-3405-8118-42E562D11F93&sector=CROPS&group=VEGETABLES&comm=POTATOES. Accessed October 26, 2011.Google Scholar
Vangessel, M. J. and Renner, K. A. 1990a. Effect of soil type, hilling time, and weed interference on potato (Solanum tuberosum) development and yield. Weed Technol. 4:299305.CrossRefGoogle Scholar
Vangessel, M. J. and Renner, K. A. 1990b. Redroot pigweed (Amaranthus retroflexus) and barnyardgrass (Echinochloa crus-galli) interference in potatoes (Solanum tuberosum). Weed Sci. 38:338343.CrossRefGoogle Scholar
Westermann, D. T., Tindall, T. A., James, D. W., and Hurst, R. L. 1994. Nitrogen and potassium fertilization of potatoes: yield and specific gravity. Am. J. Potato Res. 71:417431.CrossRefGoogle Scholar
Wiese, A. F., Sweeten, J. M., Bean, B. W., Salisbury, C. D., and Chenault, E. W. 1998. High temperature composting of cattle feedlot manure kills weed seed. Appl. Eng. Agric. 14:377380.CrossRefGoogle Scholar