Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:34:49.284Z Has data issue: false hasContentIssue false

Pyridazocidin, a new microbial phytotoxin with activity in the Mehler reaction

Published online by Cambridge University Press:  12 June 2017

B. Clifford Gerwick*
Affiliation:
DowElanco, 9330 Zionsville Road, Indianapolis, IN 46268
Stephen S. Fields
Affiliation:
DowElanco, Indianapolis, IN 46268
Paul R. Graupner
Affiliation:
DowElanco, Indianapolis, IN 46268
James A. Gray
Affiliation:
DowElanco, Indianapolis, IN 46268
Eleanor L. Chapin
Affiliation:
DowElanco, Indianapolis, IN 46268
John A. Cleveland
Affiliation:
DowElanco, Indianapolis, IN 46268
Dale R. Heim
Affiliation:
DowElanco, Indianapolis, IN 46268

Abstract

A new phytotoxin, pyridazocidin, was produced in shake-flask cultures of a Streptomyces sp. soil isolate. A combination of solvent partitioning, size-exclusion chromatography, and high-pressure liquid chromatography (HPLC) was used to isolate the material. The structure was assigned based on mass spectroscopy and nuclear magnetic resonance (NMR) experiments. Greenhouse evaluations indicated rapid necrosis and chlorosis of treated weeds, particularly of giant foxtail. Isolated chloroplasts consumed oxygen in the presence of pyridazocidin over a concentration range also inhibiting plant growth. Pyridazocidin represents the first reported natural product that appears to act via reversible oxidation/reduction linked to photosynthetic electron transport.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. T., ed. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. 352 p.Google Scholar
Amagasa, T., Paul, R. N., Heitholt, J. J., and Duke, S. O. 1994. Physiological effects of cornexisten on Lemna pausicostata . Pestic. Biochem. Physiol. 49: 3752.Google Scholar
Camilleri, P., Bowyer, J. R., Clark, M. T., and O&Neill, P. 1984. Dioxathiadiaza-heteropentalines: new photosystem-I electron acceptors. Biochim. Biophys. Acta 765: 236238.Google Scholar
Cutler, H. G. 1988. Perspectives on discovery of microbial phytotoxins with herbicidal activity. Weed Technol. 2: 525532.Google Scholar
Duke, S. O., Abbas, H. K., Boyette, C. D., and Gohbara, M. 1991. Microbial Compounds with the Potential for Herbicidal Use. Brighton Crop Protection Conference—Weeds, pp. 155164.Google Scholar
Duke., S. O. and Lydon, J. 1987. Herbicides from natural compounds. Weed Technol. 1: 122128.Google Scholar
Fields, S. C., Gerwick, B. C., and Mireles-Lo, L., inventors; DowElanco, assignee. 1995. Hydroxycornexistin. US patent 5,424,278.Google Scholar
Fields, S. C., Graupner, P. R., and Tromiczak, E. G. 1996a. 9-BBN Protected Amino Acids and Their Use in Natural Product Synthesis. Pensacola, FL: 19th Gulf Coast Chemical Conference.Google Scholar
Fields, S. C., Mireles-Lo, L., and Gerwick, B. C. 1996b. Hydroxycornexistin: a new phytotoxin from Paecilomyces variotii . J. Nat. Prod. 59: 698700.CrossRefGoogle Scholar
Fischer, H. and Bellus, D. 1983. Phytotoxicants from microorganisms and related compounds. Pestic. Sci. 14: 334346.Google Scholar
Grote, R., Chen, Y., Zeeck, A., Chen, Z., Zähner, H., Mischnick-Lübbecke, P., and König, W. A. 1988. Metabolic products of microorganisms. 243. Pyridazomycin, a new antifungal antibiotic produced by Streptomyces violaceoniges . J. Antibiot. 41: 595601.CrossRefGoogle Scholar
Heim, D. R., Cseke, C., Gerwick, B. C., Murdoch, M. G., and Green, S. B. 1995. Hydantocidin: a possible proherbicide inhibiting purine biosynthesis at the site of adenylosuccinate synthetase. Pestic. Biochem. Physiol. 53: 138145.Google Scholar
Nakajima, M., Itoi, K., Takamatsu, Y., et al. 1991. Hydantocidin: a new compound with herbicidal activity from Streptomyces bygroscopicus . J. Antibiot. 44: 293300.Google Scholar
Somerville, C. R. and Ogren, W. L. 1982. Isolation of photorespiration mutants in Arabidopsis thaliana . Pages 129138 in Edelman, G. M., Hallie, R. B., Chera, N-H, eds. Methods in Chloroplast Biology. Amsterdam: Elsevier Science.Google Scholar
Stonard, R. J. and Miller-Wideman, M. A. 1995. Herbicides and plant growth regulators. Pages 285310 in Godfrey, C.R.A., ed. Agrochemicals from Natutal Products. New York: Marcel Dekker.Google Scholar
Summers, L. A. 1980. The Bipyridinium Herbicides. Pages 316319. London: Academic Press.Google Scholar
Walker, D. 1987. The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. Pages 106109. West Sussex, Great Britain: Packard Publishing.Google Scholar
Williams, S. T. and Cross, T. 1971. Actinomycetes. Pages 295334 in Booth, C., ed. Methods in Microbiology. New York: Academic Press.Google Scholar