Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:13:57.058Z Has data issue: false hasContentIssue false

Population Variability in the Response of Ripgut Brome (Bromus diandrus) to Sulfosulfuron and Glyphosate Herbicides

Published online by Cambridge University Press:  20 January 2017

Concepción Escorial
Affiliation:
Departamento Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña Km. 7.5, 28040, Madrid, Spain
Iñigo Loureiro
Affiliation:
Departamento Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña Km. 7.5, 28040, Madrid, Spain
Enrique Rodríguez-García
Affiliation:
Departamento Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña Km. 7.5, 28040, Madrid, Spain
Cristina Chueca*
Affiliation:
Departamento Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña Km. 7.5, 28040, Madrid, Spain
*
Corresponding author's E-mail: chueca@inia.es

Abstract

Ripgut brome has become a problematic weed in Spain both as a consequence of the continuous cropping of winter wheat through minimal tillage systems and its difficult control with selective herbicides. Ripgut brome populations collected in the regions of Castilla-León and Cataluña, two main cereal-growing areas in Spain, were screened in the greenhouse for response to sulfosulfuron, a selective herbicide for the control of brome grasses in wheat, and to glyphosate, often used as a pre-plant knockdown to control bromes in no-till systems. The fresh weight percentage relative to the untreated controls was calculated for each ripgut brome population and herbicide and was used as a measure of the herbicide response. Results showed variation in fresh weight response to both herbicides among populations. Fresh weight of the populations after sulfosulfuron was applied at the two-leaf stage at a rate of 20 g ai ha−1 varied from 3% in the most susceptible population to 35% in the most resistant; the response was similar (6 to 38%) when the herbicide dose was reduced to half. For glyphosate at 800 g ae ha−1, fresh weight varied from 2 to 25% among populations, but the range of variation in fresh weight response increased as herbicide dose decreased to one half, with rates of from 4% to 90% among populations. The location of the collection site (inside the field or in-margin) showed no differences in response to both herbicides, but there was a statistically significant, geographically correlated differentiation for glyphosate response, with a greater resistance in the populations from Castilla-León. Undamaged plants were found after treatments with both herbicides, showing differences in resistance among plants. The study shows inter- and intrapopulation variability for the response of ripgut brome to sulfosulfuron and glyphosate. The implications for resistance development are discussed within the framework of relationships of the structure of the populations relative to their herbicide response.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Acedo, C. and Llamas, F. 1999. The genus Bromus L. (Poaceae) in the Iberian Peninsula. Phanerogamarum Monographie Volume XXII. Stuttgart, Germany J. Kramer. 293 p.Google Scholar
Ainouche, M. L. and Jenczewski, E. 2010. Focus on polyploidy. New Phytol. 186:14.Google Scholar
Baucom, R. S. and Mauricio, R. 2008. The evolution of novel herbicide tolerance in a noxious weed: the geographic mosaic of selection. Evol. Ecol. 22:85101.Google Scholar
Blackshaw, R. E. 1991. Control of downy brome (Bromus tectorum) in conservation fallow systems. Weed Technol. 5:557562.Google Scholar
Blackshaw, R. E. and Hamman, W. M. 1998. Control of downy brome (Bromus tectorum) in winter wheat (Triticum aestivum) with MON 37500. Weed Technol. 12:421425.Google Scholar
Brotherton, J. E., Jeschke, M. R., Tranel, P. J., and Widholm, J. M. 2007. Identification of Arabidopsis thaliana variants with differential glyphosate responses. J. Plant Physiol. 164:13371345.Google Scholar
Busi, R. and Powles, S. B. 2009. Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses. Heredity. 103:318325.Google Scholar
Chapman, M. A. and Abbott, R. J. 2010. Introgression of fitness genes across a ploidy barrier. New Phytol. 186:6371.Google Scholar
Cheam, A. H. 1986. Patterns of change in seed dormancy and persistence of Bromus diandrus Roth. (great brome) in the field. Aust. J. Agric. Res. 37:471481.Google Scholar
Cussans, G. W., Cooper, F. B., Davies, D. H. K., and Thomas, M. R. 1994. A survey of the incidence of the Bromus species as weeds of winter cereals in England, Wales and parts of Scotland. Weed Res. 34:361368.Google Scholar
Douglas, B. J., Thomas, A., and Derksen, D. A. 1990. Downy brome (Bromus tectorum) invasion into southwestern Saskatchewan. Can. J. Plant Sci. 70:11431151.Google Scholar
Fernandez-García, J. C. 1998. Problemática de las Malas Hierbas y el Empleo de Herbicidas en los Cereales paja de Castilla y León. . León, Spain Universidad de León. 205 p.Google Scholar
Fernandez García, J. C. and García-Baudín, J. M. 1997. Presencia de Bromus sp. como adventicia en los trigos y cebadas de Castilla y León. Phytoma España. 94:1315.Google Scholar
Froud-Williams, R. J. 1983. The influence of straw disposal and cultivation regime on the population dynamics of Bromus sterilis . Ann. Appl. Biol. 103:139148.Google Scholar
García-Baudin, J. M. 1983. Malas Hierbas Gramíneas en los Cereales (Trigo y Cebada) de la Región del Duero. Boletín de Información no. 9. León, Spain Consejo General de Castilla y León, Servicio de Extensión Agraria. 16 p.Google Scholar
Gibson, G. and de Kerchove, G. 1999. Timing-related yield increases in winter wheat after applications of MON37500 herbicide to control barren brome (Bromus sterilis). Pages 8792 in Proceedings of the Brighton Crop Protection Conference. Brighton, UK British Crop Protection Council.Google Scholar
Gill, G. S. and Blacklow, W. M. 1985. Variations in seed dormancy and rates of development of great brome, Bromus diandrus Roth., as adaptations to the climates of Southern Australia and implications for weed control. Aust. J. Agric. Res. 36:295304.Google Scholar
Gill, G. S., Poole, M. L., and Holmes, J. E. 1987. Competition between wheat and brome grass in Western Australia. Aust. J. Exp. Agric. 27:291294.Google Scholar
Green, J. M. 2009. Evolution of glyphosate-resistant crop technology. Weed Sci. 57:108117.Google Scholar
Gressel, J. and Segel, L. A. 1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75:349371.Google Scholar
Hamrick, J. L. and Godt, M. J. W. 1996. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351:12911298.Google Scholar
Harradine, A. R. 1986. Seed longevity and seedling establishment of Bromus diandrus Roth. Weed Res. 26:173180.Google Scholar
Heap, I. 2009. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: September 18, 2009.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Kelley, J. P. and Peeper, T. F. 2003. MON 37500 application timing affects cheat (Bromus secalinus) control and winter wheat. Weed Sci. 51:231236.Google Scholar
Kleemann, S. G. L. and Gill, G. S. 2006. Differences in the distribution and seed germination behavior of populations of Bromus rigidus and Bromus diandrus in South Australia: adaptations to habitat and implications for weed management. Aust. J. Agric. Res. 57:213219.Google Scholar
Kleemann, S. G. L. and Gill, G. S. 2009. The role of imidazolinone herbicides for the control of Bromus rigidus (rigid brome) in wheat in southern Australia. Crop Prot. 28:913916.Google Scholar
Kon, K. F. and Blacklow, W. M. 1988a. Bromus diandrus Roth and B. rigidus Roth. Pages 1327 in Groves, R. H., Shepherd, R. C. H., and Richardson, R. G., eds. The Biology of Australian Weeds. Volume 1. Melbourne, Australia R. G. and F. J. Richardson.Google Scholar
Kon, K. F. and Blacklow, W. M. 1988b. Identification, distribution and population variability of great brome (Bromus diandrus Roth) and rigid brome (Bromus rigidus Roth). Aust. J. Agric. Res. 39:10391050.Google Scholar
Kon, K. F. and Blacklow, W. M. 1990. Polymorphism, outcrossing and polyploidy in Bromus diandrus and Bromus rigidus . Aust. J. Bot. 38:609618.Google Scholar
Loureiro, I., Rodriguez-García, E., Escorial, C., García-Baudin, J. M., González-Andújar, J. L., and Chueca, M. C. 2010. Distribution and frequency of resistance to four herbicide modes of action in Lolium rigidum Gaud. accessions randomly collected in winter cereal fields in Spain. Crop Prot. DOI: .Google Scholar
Lyon, D. J., Bussan, A. J., Evans, J. O., Mallory-Smith, C. A., and Peeper, T. F. 2002. Pest management implications of glyphosate-resistant wheat (Triticum aestivum) in the western United States. Weed Technol. 16:680690.Google Scholar
Mallory-Smith, C. A., Hendrickson, P., and Mueller-Warrant, G. 1999. Cross-resistance of primisulfuron-resistant Bromus tectorum L. (downy brome) to sulfosulfuron. Weed Sci. 47:256257.Google Scholar
MARM, Ministeriode Medio Ambiente y Medio Rural y Marino. Avances, superficies y producciones de cultivos. Estadísticas. 2009. http://www.mapa.es/estadistica/pags/superficie/Avances_Cultivos_2009-07.pdf. Accessed: August 23, 2009.Google Scholar
Morrow, L. A. and Stahlman, P. W. 1984. The history and distribution of downy brome (Bromus tectorum) in North America. Weed Sci. 32:26.Google Scholar
Neve, P. and Powles, S. 2005. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum . Theor. Appl. Genet. 110:11541166.Google Scholar
Olson, B. L. S., Al-Khatib, K., Stahlman, P., and Isakson, P. J. 2000. Efficacy and metabolism of MON 37500 in Triticum aestivum and weedy grass species as affected by temperature and soil moisture. Weed Sci. 48:541548.Google Scholar
Peeper, T. F. 1984. Chemical and biological control of downy brome (Bromus tectorum) in wheat and alfalfa in North America. Weed Sci. 32:1825.Google Scholar
Riba, F. 1993. Demografia i Dinàmica de Poblacions de B. diandrus Roth en Cereals d'Hivern. . Lleida, Spain Universidad de Lleida. 116 p.Google Scholar
Rodriguez, E., Escorial, C., Fraile, L. F., García-Baudin, J. M., and Chueca, M. C. 2000. Réponse de 22 populations de Bromus diandrus Roth. aux herbicides metribuzine et sulfosulfuron. Pages 469475 in XIème Colloque International sur la Biologie des Mauvaises Herbes. Dijon, France Association Française pour la Protection des Plantes.Google Scholar
Schachner, L. J., Mack, R. N., and Novak, S. J. 2008. Bromus tectorum (Poaceae) in midcontinental United States: population genetic analysis of an ongoing invasion. Am. J. Bot. 95:15841595.Google Scholar
Shinn, S. L., Thill, D. C., Price, W. J., and Ball, D. A. 1998. Response of downy brome (Bromus tectorum) and rotational crops to MON37500. Weed Technol. 12:690698.Google Scholar
Southern Weed Science Society. 1998. Weeds of the United States and Canada. Champaign. IL Southern Weed Science Society.Google Scholar
Stewart, C. N., Tranel, P. J., Horvath, D., Anderson, J., Rieseberg, L. H., Westwood, J., Mallory-Smith, C., Zapiola, M. L., and Dlugosch, K. M. 2009. Evolution of weediness and invasiveness: charting the course for weed genomics. Weed Sci. 57:451462.Google Scholar
Tanji, A. 2001. Response of ripgut brome (Bromus rigidus) and foxtail brome (Bromus rubens) to MON 37500. Weed Technol. 15:642646.Google Scholar
Theaker, A. J., Boatman, N. D., and Froud-Williams, R. J. 1995. Variation in Bromus sterilis on farmland: evidence for the origin of field infestations. J. Appl. Ecol. 32:4755.Google Scholar
Valliant, M. T., Mack, R. N., and Novak, S. J. 2007. Introduction history and population genetics of the invasive grass Bromus tectorum (Poaceae) in Canada. Am. J. Bot. 94:11561169.Google Scholar
Villarroya, M., Escorial, M. C., Sixto, H., Chueca, M. C., and García-Baudin, J. M. 1997. Glasshouse and laboratory response of some species of cereals and Bromus diandrus to the new herbicide MON37500. Pages 10371042 in Proceedings of the Brighton Crop Protection Conference. Brighton, UK British Crop Protection Council.Google Scholar
Wendel, J. F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42:225249.Google Scholar
Wiese, A. F., Salisbury, C. D., and Bean, B. W. 1995. Downy brome (Bromus tectorum), jointed goatgrass (Aegilops cylindrica) and horseweed (Conyza canadensis) control in fallow. Weed Technol. 9:249254.Google Scholar
Woodburn, A. 2000. Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56:309312.Google Scholar
Zadoks, J. C., Chang, T. T., and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415421.Google Scholar