Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:37:27.492Z Has data issue: false hasContentIssue false

Plant Cell and Tissue Culture Techniques for Weed Science Research

Published online by Cambridge University Press:  12 June 2017

Reid J. Smeda
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., Stoneville, MS 38776
Stephen C. Weller
Affiliation:
Dep. Hortic., Purdue Univ., West Lafayette, IN 47907-1165

Abstract

Tissue and cell culture offer weed scientists many opportunities to research herbicide effects on plants. This review will discuss examples in which plant cells grown in vitro have been used to study herbicide action. Plant cell and tissue culture have many advantages over the use of whole plants; however, several disadvantages that exist are discussed. Cell cultures can be established for most plant species and provide a relatively homogeneous system for studying herbicide action. Responses of plant cells to herbicides are usually correlated with responses at the whole plant level, and cells have the advantage of posing fewer physical barriers to herbicide uptake and translocation. Cell culture techniques discussed include: screening candidate herbicide compounds; investigating herbicide efficacy, mechanism of action, metabolism, and uptake; and ascertaining mechanisms of herbicide resistance, selecting for resistance, and regenerating crops.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Abusteit, E. O., Corbin, F. T., Schmitt, D. P., Burton, J. W., Worsham, A. D., and Thompson, L. Jr. 1985. Absorption, translocation, and metabolism of metribuzin in diploid and tetraploid soybean (Glycine max) plants and cell cultures. Weed Sci. 33:618628.CrossRefGoogle Scholar
2. Ammirato, P. V. 1983. Embryogenesis. Pages 82123 in Evans, D. A., Sharp, W. R., Ammirato, P. V., and Yamada, Y., eds. Handbook of Plant Cell Culture, Volume 1. The MacMillan Co., New York.Google Scholar
3. Amrhein, N., Johanning, D., Schab, J., and Schulz, A. 1983. Biochemical basis for glyphosate-tolerance in a bacterium and a plant tissue culture. FEBS Lett. 157:191196.CrossRefGoogle Scholar
4. Aviv, D. and Galun, E. 1977. Isolation of tobacco protoplasts in the presence of isopropyl N-phenylcarbamate and their culture and regeneration into plants. Z. Pflanzenphysiol. 83:267273.CrossRefGoogle Scholar
5. Bramley, P. M., Clarke, I. E., Sandmann, G., and Boger, P. 1984. Inhibition of carotene biosynthesis in cell extracts of Phycomyces blakeslceanus . Z. Naturforsch. 39C:460463.CrossRefGoogle Scholar
6. Buhler, D. D., Swisher, B. A., and Burnside, O. C. 1985. Behavior of 14C-haloxyfop-methyl in intact plants and cell cultures. Weed Sci. 33:291299.CrossRefGoogle Scholar
7. Burton, J. D. and Balke, N. E. 1988. Glyphosate uptake by suspension-cultured potato (Solanum tuberosum and S. brevidens) cells. Weed Sci. 36:146153.CrossRefGoogle Scholar
8. Byers, T. L., Kameji, R., Rannels, D. E., and Pegg, A. E. 1987. Multiple pathways for uptake of paraquat, methylglyoxal bis (guanylhydrazone), and polyamines. Am. J. Physiol. 252:c663c669.CrossRefGoogle ScholarPubMed
9. Camper, N. D. and McDonald, S. K. 1989. Tissue and cell cultures as model systems in herbicide research. Rev. Weed Sci. 4:169190.Google Scholar
10. Chaleff, R. S. and Parsons, M. F. 1978. Direct selection in vitro for herbicide-resistant mutants of Nicotiana tabacum . Proc. Nat. Acad. Sci. U.S.A. 75:51045107.CrossRefGoogle ScholarPubMed
11. Chaleff, R. S. 1983. Isolation of agronomically useful mutants from plant cell cultures. Science 219:676682.CrossRefGoogle ScholarPubMed
12. Chaleff, R. S. and Ray, T. B. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science 223:11481151.CrossRefGoogle ScholarPubMed
13. Christianson, M. L. 1991. Fun with mutants: applying genetic methods to problems of weed physiology. Weed Sci. 39:489496.CrossRefGoogle Scholar
14. Cole, D. J. and Owen, W. J. 1987. Metabolism of metalaxyl in cell suspension cultures of Lactuca sativa L. and Vitis vinifera L. Pestic. Biochem. Physiol. 28:354361.CrossRefGoogle Scholar
15. Cole, D. J. and Owen, W. J. 1987. Influence of monooxygenase inhibitors on the metabolism of the herbicides chlortoluron and metolachlor in cell suspension cultures. Plant Sci. 50:1320.CrossRefGoogle Scholar
16. Comai, L., Facciotti, D., Hiatt, W., Thompson, G., Rose, R., and Stalker, D. 1985. Expression in plants of a mutant aro A. gene from Salmonella typhimurium confers tolerance to glyphosate. Nature (London) 317:741744.CrossRefGoogle Scholar
17. Conner, A. J. and Meredith, C. P. 1984. An improved polyurethane support system for monitoring growth in plant cell cultures. Plant Cell Tissue Organ Cult. 3:5968.CrossRefGoogle Scholar
18. Creason, G. L. and Chaleff, R. S. 1988. A second mutation enhances resistance of a tobacco mutant to sulfonylurea herbicides. Theor. Appl. Genet. 76:177182.CrossRefGoogle ScholarPubMed
19. Crocomo, O. J. and Ochoa-Alejo, N. 1983. Herbicide tolerance in regenerated plants. Pages 770781 in Evans, D. A., Sharp, W. R., Ammirato, P. V., and Yamada, Y. eds. Handbook of Plant Cell Culture. Vol. 1. The MacMillan Co., New York.Google Scholar
20. Davey, M. R., Cocking, E. C., Freeman, J., Pearce, N., and Tudor, I. 1980. Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci. Lett. 18:307313.CrossRefGoogle Scholar
21. Davidonis, G. H., Hamilton, R. H., and Mumma, R. O. 1978. Metabolism of 2,4-dichlorophenoxyacetic acid in soybean root callus and differentiated soybean root cultures as a function of concentration and tissue age. Plant Physiol. 62:8082.CrossRefGoogle Scholar
22. Deak, M., Donn, G., Fehr, A., and Dudits, D. 1988. Dominant expression of a gene amplification-related herbicide resistance in Medicago cell hybrids. Plant Cell Rep. 7:158161.CrossRefGoogle ScholarPubMed
23. DeBlock, M. P., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Rao Movva, N., Thompson, C., Van Montagu, M., and Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:25132518.CrossRefGoogle Scholar
24. deFossard, R. A., Myint, A., and Lee, E.C.M. 1974. A broad spectrum tissue culture experiment with tobacco (Nicotiana tabacum) pith tissue callus. Physiol. Plant. 30:125130.CrossRefGoogle Scholar
25. Donn, G., Tischer, E., Smith, J. A., and Goodman, H. M. 1984. Herbicide-resistant alfalfa cells: An example of gene amplification in plants. J. Mol. Appl. Genet. 2:621635.Google ScholarPubMed
26. Dyer, W. E., Weller, S. C., Bressan, R. A., and Herrmann, K. M. 1988. Glyphosate tolerance in tobacco (Nicotiana tabacum L.). Plant Physiol. 88:661666.CrossRefGoogle ScholarPubMed
27. Dyer, W. E. 1991. Applications of molecular biology in weed science. Weed Sci. 39:482488.CrossRefGoogle Scholar
28. Ellis, B. E. 1978. Non-differential sensitivity to the herbicide metribuzin in tomato cell suspension cultures. Can. J. Plant Sci. 58:775778.CrossRefGoogle Scholar
29. Flashman, S. M. 1985. Use of a non-volatile thiocarbamate to select for herbicide-tolerant tobacco cell lines. Plant Sci. 38:149153.CrossRefGoogle Scholar
30. Flick, C. E. 1983. Isolation of mutants from cell culture. Pages 393441 in Evans, D. A., Sharp, W. R., Ammirato, P. V., and Yamada, Y., eds. Handbook of Plant Cell Culture. Vol. 1. The MacMillan Co., New York.Google Scholar
31. Flick, C. E., Evans, D. A., and Sharp, W. R. 1983. Organogenesis. Pages 1381 in Evans, D. A., Sharp, W. R., Ammirato, D. V., and Yamada, Y. eds. Handbook of Plant Cell Culture. Vol. 1. The MacMillan Co., New York.Google Scholar
32. Goldsbrough, P. B., Hatch, E. M., Huang, B., Kosinski, W. G., Dyer, W. E., Herrmann, K. M., and Weller, S. C. 1990. Gene amplification in glyphosate tolerant tobacco cells. Plant Sci. 72:5362.CrossRefGoogle Scholar
33. Gonzales, R. A. and Widholm, J. M. 1983. Selection of plant cells for desirable characteristics: Inhibitor resistance. Pages 6778 in Dixon, R. A., ed. Plant Cell Culture, A Practical Approach. IRL Press, Washington, DC.Google Scholar
34. Gressel, J. 1979. A review of the place of in vitro cell culture systems in the studies of action, metabolism, and resistance of biocides affecting photosynthesis. Z. Naturforsch. 34C:905909.CrossRefGoogle Scholar
35. Gressel, J. 1984. Plant tissue culture systems for screening of plant growth regulators: Hormones, herbicides, and natural phytotoxins. Pages 93181 in Maramorosch, K., ed. Advances in Cell Culture. Vol. 3. Academic Press, New York.Google Scholar
36. Gressel, J. 1987. In vitro plant cultures for herbicide prescreening. Pages 4152 in LeBaron, H. M., Mumma, R. O., Honeycutt, R. C., and Duesing, J. H., eds. Biotechnology in Agricultural Chemistry. Am. Chem. Soc. Symp. Ser. 334.Google Scholar
37. Gressel, J. 1989. Conferring herbicide resistance on susceptible crops. Pages 237259 in Dodge, A. D., ed. Herbicides and Plant Metabolism. Cambridge Univ. Press, New York.Google Scholar
38. Haderlie, L. C., Widholm, J. M., and Slife, F. W. 1977. Effect of glyphosate on carrot and tobacco cells. Plant Physiol. 60:4043.CrossRefGoogle ScholarPubMed
39. Haughn, G. W., Smith, J., Mazur, B. J., and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211:266271.CrossRefGoogle Scholar
40. Hickok, L. G. and Schwarz, O. J. 1986. Paraquat tolerant mutants in Ceratopteris: Genetic characterization and reselection of enhanced tolerance. Plant Sci. 47:153158.CrossRefGoogle Scholar
41. Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222:13461349.CrossRefGoogle ScholarPubMed
42. Hollander-Czytko, H. and Amrhein, N. 1983. Subcellular compartmentation of shikimic acid and phenylalanine in buckwheat cell suspension cultures grown in the presence of shikimate pathway inhibitors. Plant Sci. Lett. 29:8996.CrossRefGoogle Scholar
43. Horn, M. E., Scherrard, J. H., and Widholm, J. M. 1983. Photoautotrophic growth of soybean cells in suspension culture. Plant Physiol. 72:426429.CrossRefGoogle ScholarPubMed
44. Horsch, R. B. and Jones, G. E. 1980. A double filter plate technique for plating cultured plant cells. In Vitro 16:103108.CrossRefGoogle Scholar
45. Hughes, K. 1983. Selection for herbicide resistance. Pages 442460 in Evans, D. A., Sharp, W. R., Ammirato, P. V., and Yamada, Y., eds. Handbook of Plant Cell Culture. Vol. 1. The MacMillan Co., New York.Google Scholar
46. Ishida, Y., Hiyoshi, T., Sano, M., and Kumashiro, T. 1989. Selection and characterization of a herbicide-tolerant cell line of tobacco (Nicotiana tabacum L.). Plant Sci. 63:227235.CrossRefGoogle Scholar
47. Jordan, L. S., Murashige, T., Mann, J. D., and Day, B. E. 1966. Effect of photosynthesis-inhibiting herbicides on non-photosynthetic tobacco callus tissue. Weeds 14:134136.CrossRefGoogle Scholar
48. Kenyon, P. D., Marshall, G., and Morrison, I. N. 1987. Selection for sulfonylurea herbicide tolerance in oil seed rape (Brassica napus) using microspore culture. Proc. Br. Crop Prot. Conf.—Weeds. 83:871877.Google Scholar
49. Kishore, G. M., and Shah, D. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.CrossRefGoogle ScholarPubMed
50. Krens, F. A., Molendijk, L., Wullems, G. J., and Schilperoort, R. A., 1982. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature (London) 296:7274.CrossRefGoogle Scholar
51. Lamoureux, G. L. and Frear, D. S. 1979. Pesticide metabolism in higher plants: In vitro enzyme studies. Pages 77128 in Paulson, G. D., Frear, D. S., and Marks, E. P., eds. Xenobiotic Metabolism: In Vitro Methods. Am. Chem. Soc. Symp. Ser. 97.CrossRefGoogle Scholar
52. Lee, M. and Phillips, R. L. 1988. The chromosomal basis of somaclonal variation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:413437.CrossRefGoogle Scholar
53. Leemans, J., DeBlock, M., Halluin, K. D., Botterman, J., and DeGreef, W. 1987. The use of glufosinate as a selective herbicide on genetically engineered resistant tobacco plants. Proc. Br. Crop. Prot. Conf.—Weeds. 3:867–370.Google Scholar
54. Masuda, T., Kouji, H., and Matsunaka, S. 1990. Diphenyl ether herbicide-decreased heme contents stimulate 5-aminolevulinic acid synthesis. Pestic. Biochem. Physiol. 36:106114.CrossRefGoogle Scholar
55. Matringe, M. and Scalla, R. 1988. Studies on the mode of action of acifluorfen-methyl in nonchlorophyllous soybean cells. Plant Physiol. 86:619622.CrossRefGoogle ScholarPubMed
56. Mazur, B. J., Falco, S. C., Knowlton, S., and Smith, J. K. 1987. Acetolactate synthase, the target enzyme of the sulfonylurea herbicides. Plant Mol. Biol. 140:339349.CrossRefGoogle Scholar
57. Meredith, C. P. and Carlson, P. S. 1982. Herbicide resistance in plant cell cultures. Pages 275291 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
58. Metcalf, E. C. and Collin, H. A. 1978. The effect of simazine on the growth and respiration of a cell suspension culture of celery. New Phytol. 81:243248.CrossRefGoogle Scholar
59. Miller, O. K. and Hughes, K. W. 1980. Selection of paraquat-resistant variants of tobacco from cell cultures. In Vitro 16:10851091.CrossRefGoogle Scholar
60. Mumma, R. O. and Hamilton, R. H. 1979. Xenobiotic metabolism in higher plants: In vitro tissue and cell culture techniques. Pages 3576 in Paulson, G. D., Frear, D. S., and Marks, E. P., eds. Xenobiotic Metabolism: In Vitro Methods. Am. Chem. Soc. Symp. Series 97.CrossRefGoogle Scholar
61. Nabors, M. W. 1976. Using spontaneously occurring and induced mutations to obtain agriculturally useful plants. Bioscience 26:761768.CrossRefGoogle Scholar
62. Nafzinger, E. D., Widholm, J. M., Steinrucken, H. C., and Kilmer, J. L. 1984. Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76:571574.CrossRefGoogle Scholar
63. Negrutiu, I., Jacobs, M., and Caboche, M. 1984. Advances in somatic cell genetics of higher plants—the protoplast approach in basic studies on mutagenesis and isolation of biochemical mutants. Theor. Appl. Genet. 67:289304.CrossRefGoogle ScholarPubMed
64. Norman, M. A., Liebl, R. A., and Widholm, J. M. 1990. Site of clomazone action in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures. Plant Physiol. 94:704709.CrossRefGoogle ScholarPubMed
65. Oswald, T. H., Smith, A. E., and Phillips, D. V. 1977. Phytotoxicity and detoxification of metribuzin in dark-grown suspension cultures of soybean. Pestic. Biochem. Physiol. 8:73–33.Google Scholar
66. Paszowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., and Potrykus, I. 1984. Direct gene transfer to plants. EMBO J. 3:27172722.CrossRefGoogle Scholar
67. Radin, D. N. and Carlson, P. S. 1978. Herbicide-tolerant tobacco mutants selected in situ and recovered via regeneration from cell culture. Genet. Res., Camb. 32:8589.CrossRefGoogle Scholar
68. Ray, T. B. and Still, C. C. 1975. Propanil metabolism in rice: A comparison of propanil amidase activities in rice plant and callus cultures. Pestic. Biochem. Physiol. 5:171177.CrossRefGoogle Scholar
69. Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827–331.CrossRefGoogle ScholarPubMed
70. Rubin, J. L., Gaines, C. G., and Jensen, R. A. 1984. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthase from suspension-cultured cells of Nicotiana silvestris . Plant Physiol. 75:839845.CrossRefGoogle Scholar
71. Ruesink, A. W. 1971. The plasma membrane of Avena coleoptile protoplasts. Plant Physiol. 47:192195.CrossRefGoogle ScholarPubMed
72. Sandmann, G., Clarke, I. E., Bramley, P. M., and Boger, P. 1984. Inhibition of phytoene desaturase—the mode of action of certain bleaching herbicides. Z. Naturforsch. 39C:443449.CrossRefGoogle Scholar
73. Sato, F., Shigematsu, Y., and Yamada, Y. 1988. Selection of an atrazine-resistant tobacco cell line having a mutant psbA gene. Mol. Gen. Genet. 214:358360.CrossRefGoogle ScholarPubMed
74. Sato, P., Takeda, S., and Yamada, Y. 1987. A comparison of effects of several herbicides on photoautotrophic, photomixotrophic and heterotrophic cultured tobacco cells and seedlings. Plant Cell Rep. 6:401404.CrossRefGoogle ScholarPubMed
75. Scheel, D. and Casida, J. E. 1985. Sulfonylurea herbicides: Growth inhibition in soybean cell suspension cultures and in bacteria correlated to a block in biosynthesis of valine, leucine, or isoleucine. Pestic. Biochem. Physiol. 23:398412.CrossRefGoogle Scholar
76. Scowcroft, W. R. and Larkin, P. J. 1988. Somaclonal variation. Pages 2135 in Ciba Foundation Symp. 137. Applications of Plant Cell and Tissue Culture. John Wiley and Sons, New York.Google Scholar
77. Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tumer, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G., and Fraley, R. T. 1986. Engineering herbicide tolerance in transgenic plants. Science 233:478481.CrossRefGoogle ScholarPubMed
78. Shimabukuro, R. H. and Walsh, W. C. 1979. Xenobiotic metabolism in plants: In vitro tissue, organ, and isolated cell techniques. Pages 334 in Paulson, G. D., Frear, D. S., and Marks, E. P., eds. Xenobiotic Metabolism: In vitro Methods. Am. Chem. Soc. Symp. Series 97.CrossRefGoogle Scholar
79. Shyr, Y. Y. and Widholm, J. M. 1990. Glyphosate resistance and gene amplification in selected Daucus carota suspension cultures. Pages 148152 in Nijkamp, H.J.J., Vander Plas, L.Y.W., and Van Aurtrijc, J., eds. Progress in Plant Cell and Molecular Biology. Kluwer Academic, Norwell.CrossRefGoogle Scholar
80. Singer, S. R. and McDaniel, C. N. 1985. Selection of glyphosatetolerant tobacco calli and the expression of this tolerance in regenerated plants. Plant Physiol. 78:411416.CrossRefGoogle ScholarPubMed
81. Smeda, R. J., Hasegawa, P. M., and Weller, S. C. 1990. Molecular basis for atrazine resistance in photoautotrophic potato cells. Weed Sci. Soc. Am. Abstr. Page 56.Google Scholar
82. Stalker, D. M., McBride, K. E., and Malyj, L. D. 1988. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419423.CrossRefGoogle ScholarPubMed
83. Steinrucken, H. C. and Amrhein, N. 1984. 5-Enolpyruvylshikimate 3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition of glyphosate [N-(phosphonomethyl)glycine]. Eur. J. Biochem. 143:351357.CrossRefGoogle ScholarPubMed
84. Steinrucken, H. C., Schultz, A., Amrhein, N., Porter, C. A., and Fraley, R. T. 1986. Overproduction of 5-enolpyruvylshikimate-3-phosphate synthase activity in a glyphosate tolerant Petunia hybrida cell line. Arch. Biochem. Biophys. 244:169178.CrossRefGoogle Scholar
85. Sterling, T. M. and Balke, N. E. 1988. Use of soybean (Glycine max) and velvetleaf (Abutilon theophrasti) suspension cultured cells to study bentazon metabolism. Weed Sci. 36:558565.CrossRefGoogle Scholar
86. Sterling, T. M. and Balke, N. E. 1990. Bentazon uptake and metabolism by cultured plant cells in the presence of monooxygenase inhibitors and cinnamic acid. Pestic. Biochem. Physiol. 38:6675.CrossRefGoogle Scholar
87. Sterling, T. M., Balke, N. E., and Silverman, D. S. 1990. Uptake and accumulation of the herbicide bentazon by cultured plant cells. Plant Physiol. 92:11211127.CrossRefGoogle ScholarPubMed
88. Sunderland, N. 1973. Nuclear cytology. Pages 161190 in Street, H. E., ed. Plant Tissue and Cell Culture. Univ. of California, Berkeley.Google Scholar
89. Swanson, E. B., Coumans, M. P., Brown, G. L., Patel, J. D., and Beresdorf, W. D. 1988. The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep. 7:8387.CrossRefGoogle ScholarPubMed
90. Swisher, B. A. and Corbin, F. T. 1982. Behavior of BAS-9052 OH in soybean (Glycine max) and Johnsongrass (Sorghum halepense) plant and cell cultures. Weed Sci. 30:640650.CrossRefGoogle Scholar
91. Swisher, B. A. and Weimer, M. R. 1986. Comparative detoxification of chlorsulfuron in leaf disks and cell cultures of two perennial weeds. Weed Sci. 34:507512.CrossRefGoogle Scholar
92. Swisher, B. A. 1987. Use of plant cell cultures in pesticide metabolism studies. Pages 1840 in LeBaron, H. M., Mumma, R. O., Honeycutt, R. C., and Duesing, J. H., eds. Biotechnology in Agricultural Chemistry. Am. Chem. Soc. Symp. Ser. 334.CrossRefGoogle Scholar
93. Tisserat, B. 1985. Embryogenesis, organogenesis, and plant regeneration. Pages 79105 in Dixon, R. A., ed. Plant Cell Culture, A Practical Approach. IRL Press, Washington, DC.Google Scholar
94. Weber, G. and Lark, K. G. 1979. An efficient plating system for rapid isolation of mutants from plant cell suspensions. Theor. Appl. Genet. 55:8186.CrossRefGoogle ScholarPubMed
95. Widholm, J. 1977. Selection and characterization of biochemical mutants. Pages 112122 in Barz, W., Reinhard, E., and Zenk, M. H., eds. Plant Tissue Culture and Its Bio-technological Application. Springer-Verlag, Berlin.CrossRefGoogle Scholar
96. Zilkah, S. and Gressel, J. 1977. Cell cultures vs. whole plants for measuring phytotoxicity III. Correlations between phytotoxicities in cell suspension cultures, calli, and seedlings. Plant and Cell Physiol. 18:815820.Google Scholar
97. Zilkah, S. and Gressel, J. 1978. Correlations in phytotoxicity between white and green calli of Rumex obtusifolius, Nicotiana tabacum, and Lycopersicon esculentum . Pestic. Biochem. Physiol. 9:334339.CrossRefGoogle Scholar