Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T23:54:31.318Z Has data issue: false hasContentIssue false

Pinto Bean (Phaseolus vulgaris) Varietal Tolerance to Imazethapyr

Published online by Cambridge University Press:  12 June 2017

Troy A. Bauer
Affiliation:
Michigan St. Univ., Crop and Soil Sci. Dep., East Lansing, MI 48824-1325
Karen A. Renner
Affiliation:
Michigan St. Univ., Crop and Soil Sci. Dep., East Lansing, MI 48824-1325
Donald Penner
Affiliation:
Michigan St. Univ., Crop and Soil Sci. Dep., East Lansing, MI 48824-1325
James D. Kelly
Affiliation:
Michigan St. Univ., Crop and Soil Sci. Dep., East Lansing, MI 48824-1325

Abstract

Field and laboratory studies were conducted to determine if differences existed in pinto bean varietal tolerance to postemergence application of imazethapyr under field conditions; if differences in tolerance were due to differential acetolactate synthase enzyme sensitivity or differences in 14C-imazethapyr absorption, translocation, and metabolism; and the heritability of imazethapyr tolerance in pinto bean. All rates of imazethapyr injured Olathe, Sierra, UI-114, P89405, Aztec, and P90570 pinto bean varieties 7 d after treatment in 1991 and 1992, except 53 g ai ha−1 of imazethapyr applied to Sierra pinto bean in 1991. Olathe was injured more than other varieties in 1991, and physiological maturity of Olathe was delayed more than Sierra in 1991 and 1992. Seed yields of all varieties were not reduced in 1991, and only P90570 had reduced seed yields from 53 g ha−1 of imazethapyr in 1992. Differential sensitivity of the acetolactate synthase enzyme to imazethapyr was not the mechanism of differential varietal response. Olathe pinto bean absorbed and translocated 1.4 and 1.3 times more 14C-imazethapyr, respectively, than Sierra pinto bean 24 h after application. No differences in 14C-imazethapyr metabolism were detected between Olathe and Sierra pinto bean. Broad heritability of imazethapyr tolerance in pinto bean was calculated to be 0.85. The number of genes controlling the inheritance of imazethapyr tolerance in pinto bean was greater than one.

Type
Weed Management
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Anderson, P. C. and Georgson, M. 1986. Selection of an imidazolinone tolerant mutant corn. Page 437 in Somers, D. A., Gengenback, B. G., Biesboer, D. D., Hackett, W. P., and Green, C. E., eds. VI International Congress of Plant Tissue and Cell Culture Abstracts, Univ. Minnesota, MN.Google Scholar
2. Anderson, P. C. and Hibberd, K. A. 1985. Evidence for the interaction of an imidazolinone herbicide with leucine, valine, and isoleucine metabolism. Weed Sci. 33:479483.CrossRefGoogle Scholar
3. Cole, T. A., Wehtje, G. R., Wilcut, J. W., and Hicks, T. V. 1989. Behavior of imazethapyr in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37:639644.Google Scholar
4. Eberlein, C. B., Rosow, K. M., Geadelmann, J. L., and Openshaw, S. J. 1989. Differential tolerance of corn genotypes to DPX-6316. Weed Sci. 37:651657.Google Scholar
5. Fehr, W. R. 1987. Principles of cultivar development, Vol 1, theory and technique. Pages 95105. McGraw-Hill, Inc., New York.Google Scholar
6. Hart, R., Lignowski, E., and Taylor, F. 1991. Imazethapyr herbicide. Pages 247259 in Shaner, D. L. and Conner, S. L., ed. The Imidazolinone Herbicides. CRC Press, Inc. Boca Raton, FL.Google Scholar
7. Hart, S. E., Saunders, J. W., and Penner, D. 1993. Semi-dominant nature of monogenic sulfonylurea herbicide resistance in sugarbeet (Beta vulgaris). Weed Sci. 41:317324.CrossRefGoogle Scholar
8. Inskeep, W. P. and Bloom, P. R. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77:483485.Google Scholar
9. King, M. G. and Radosevich, S. R. 1979. Tanoak (Lithocarpus densiflorus) leaf surface characteristics and absorption of triclopyr. Weed Sci. 27:599604.CrossRefGoogle Scholar
10. Lowry, O. H., Rosebrough, N. S., Farr, A. L., and Randall, R. S. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265275.CrossRefGoogle ScholarPubMed
11. Malburg, M. E. 1992. Genetic relationships between plant architecture, seed size and allozymes in common bean (Phaseolus vulgaris L.). Mich. St. Univ., M.S. Thesis. pp 4952.Google Scholar
12. Malefyt, T. and Shaner, D.L. 1986. The effect of temperature on AC 263,499 in soybeans and alfalfa. Abst. Weed Sci. Soc. Am. 26:71.Google Scholar
13. Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4:787790.CrossRefGoogle Scholar
14. Muhitch, M. J., Shaner, D. L., and Stidham, M. A. 1987. Imidazolinones and acetohydroxyacid synthase from higher plants. Plant Physiol. 83:451456.CrossRefGoogle ScholarPubMed
15. Newhouse, K. E., Wang, T., and Anderson, P. C. 1991. Imidazolinone resistant crops. Pages 139150 in Shaner, D. L. and Conner, S. L., ed. The Imidazolinone Herbicides. CRC Press, Inc. Boca Raton, FL.Google ScholarPubMed
16. Poehlman, J. M. 1987. Quantitative inheritance in plant breeding. Page 7081 in Breeding Field Crops. 3rd ed. AVI Publishing Co. Inc., Westport, CT.Google Scholar
17. Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.Google Scholar
18. Renner, K. A. and Powell, G. E. 1988. Dry edible bean tolerance to postemergence herbicides. Proc. North Cent. Weed Control Conf. 43:36.Google Scholar
19. Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29:14031408.Google Scholar
20. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones -potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
21. Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of statistics: A biometrical approach. 2nd ed. p. 341.Google Scholar
22. Stidham, M. A. and Singh, B. K. 1991. Imidazolinone-acetohydroxyacid synthase interactions. Pages 7190 in Shaner, D. L. and Conner, S. L., ed. The Imidazolinone Herbicides. CRC Press, Inc. Boca Raton, FL.Google Scholar
23. Vencill, W. K., Wilson, H. P., Hines, T. E., and Hatzios, K. K. 1990. Common lambsquarters (Chenopodium album) and rotational crop response to imazethapyr in pea (Pisum sativum) and snap bean (Phaseolus vulgaris). Weed Technol. 4:3943.CrossRefGoogle Scholar
24. Westerfield, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.CrossRefGoogle ScholarPubMed
25. Wilson, R. G. and Miller, S. D. 1991. Dry edible bean (Phaseolus vulgaris) response to imazethapyr. Weed Technol. 5:2226.CrossRefGoogle Scholar
26. Wilson, R. G. 1989. New herbicides for weed control in established alfalfa (Medicago sativa). Weed Technol. 3:523526.Google Scholar
27. Wright, S. 1934. The results of crosses between inbred strains of guinea pigs, differing in number of digits. Genetics 19:537551.Google Scholar
28. WSSA Herbicide Handbook Committee. 1989. Herbicide Handbook. 6th ed. Champaign, IL.Google Scholar