Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T20:33:17.506Z Has data issue: false hasContentIssue false

Nicosulfuron Resistance and Metabolism in Terbufos- and Naphthalic Anhydride-Treated Corn

Published online by Cambridge University Press:  12 June 2017

Balazs Siminszky
Affiliation:
Crop Sci. Dep., North Carolina State Univ., Raleigh, NC 27695-7620
Frederick T. Corbin
Affiliation:
Crop Sci. Dep., North Carolina State Univ., Raleigh, NC 27695-7620
Yvonna Sheldon
Affiliation:
Crop Sci. Dep., North Carolina State Univ., Raleigh, NC 27695-7620

Abstract

Synergistic interaction between the insecticide terbufos and the herbicide nicosulfuron may result in severe injury to corn. Greenhouse and laboratory experiments were conducted to determine if using the imidazolinone-resistant corn ‘Pioneer-3343 IR’ (P-3343 IR) or coating corn seeds with naphthalic anhydride (NA) would reduce herbicidal injury imposed by the nicosulfuron-terbufos interaction. Greenhouse experiments showed nicosulfuron-terbufos interactions resulting in herbicidal injury in both P-3343 IR and ‘DeKalb 689’ (D-689) corn varieties, but the D-689 was more sensitive than the P-3343 IR corn. The greenhouse experiments also demonstrated protection against the nicosulfuron-terbufos interaction by NA seed treatments. Studies with radiolabeled nicosulfuron showed that terbufos inhibited the metabolism of nicosulfuron, but pretreatment of D-689 and P-3343 IR corn seed with NA decreased the inhibition in excised corn leaves. The differences in sensitivity to nicosulfuron in the two corn varieties resulted in part from the differential metabolism and primarily from the differential sensitivity of the target enzyme, acetolactate synthase, to the herbicide.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Anonymous. 1990. Accent herbicide: For use on field corn. Technical Bulletin. E. I. du Pont de Nemours and Co. 12 p.Google Scholar
2. Biediger, D. L., Baumann, P. A., Weaver, D. N., Chandler, J. M., and Merkle, M. G. 1991. Corn response to CGA-136872 and DPX-V9360 on corn. treated with selected soil-applied organophosphate insecticides. Proc. South. Weed Sci. Soc. 44:104.Google Scholar
3. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248254.Google Scholar
4. Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29:263281.Google Scholar
5. Brown, H. M., Dietrich, R. F., Kenyon, W. H., and Lichtner, F. T. 1991. Prospects for the biorational design of crop selective herbicides. Br. Crop Prot. Conf.-Weeds. 7A-2:847856.Google Scholar
6. Burton, J. D., Maness, E. P., Monks, D. W., and Robinson, D. K. 1994. Sulfonylurea selectivity and safener activity in ‘Landmark’ and ‘Merit’ sweet corn. Pestic. Biochem. Physiol. 48:163172.CrossRefGoogle Scholar
7. Camacho, R. F., Moshier, L. J., Morishita, D. W., and Devlin, D. C. 1991. Rhizome johnsongrass (Sorghum halepense) control in corn (Zea mays) with primisulfuron and nicosulfuron. Weed Technol. 5:789794.Google Scholar
8. Chaleff, R. S. and Mauvais, C. V. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.Google Scholar
9. Dobbels, A. F. and Kapusta, G. 1993. Postemergence weed control in corn (Zea mays) with nicosulfuron combinations. Weed Technol. 7:844850.CrossRefGoogle Scholar
10. Felsot, A. S., Bruce, W. N., and Steffey, K. S. 1987. Degradation of terbufos (Counter) soil insecticide in corn fields under conservation tillage practices. Bull. Environ. Contam. Toxicol. 38:369376.Google Scholar
11. Fonne-Pfister, R., Gaudin, J., Kreuz, K., Ramsteiner, K., and Ebert, E. 1990. Hydroxylation of primisulfuron by an inducible cytochrome P-450-dependent monooxygenase from maize. Pestic. Biochem. Physiol. 37:165173.Google Scholar
12. Frazier, T. L. and Nissen, S. J. 1994. Influence of crop safeners on the interaction of primisulfuron and terbufos in corn. Weed Sci. 42:168171.Google Scholar
13. Frazier, T. L., Nissen, S. J., Mortensen, D. A., and Meinke, L. J. 1993. The influence of terbufos on primisulfuron absorption and fate in corn (Zea mays). Weed Sci. 41:664668.CrossRefGoogle Scholar
14. Frear, D. S., Swanson, H. R., and Thalacker, F. W. 1991. Induced microsomal oxidation of diclofop, triasulfuron, chlorsulfuron, and linuron in wheat. Pestic. Biochem. Physiol. 41:274287.Google Scholar
15. Harms, C. T., Montoya, A. L., Privalle, L. S., and Briggs, R. W. 1990. Genetic and biochemical characterization of corn inbred lines tolerant to the sulfonylurea herbicide primisulfuron. Theor. Appl. Genet. 80:353358.Google Scholar
16. Hatzios, K. K. 1991. An overview of the mechanisms of action of herbicide safeners. Z. Naturforsch. 46c:819827.Google Scholar
17. Hoagland, D. R. and Arnon, D. I. 1950. The water culture method for growing plants without soil. Calif. Agric. Exp. Sta. Circ. 347. 32 p.Google Scholar
18. Kapusta, G. and Krausz, R. F. 1992. Interaction of terbufos and nicosulfuron on corn (Zea mays). Weed Technol. 6:9991003.Google Scholar
19. Kreuz, K. and Fonne-Pfister, R. 1992. Herbicide-insecticide interaction in maize: Malathion inhibits cytochrome p450-dependent primisulfuron metabolism. Pestic. Biochem. Physiol. 43:232240.Google Scholar
20. McFadden, J. J., Gronwald, J. W., and Eberlein, C. V. 1990. In vitro hydroxylation of bentazon by microsomes from naphthalic anhydride-treated corn shoots. Biochem. Biophys. Res. Com. 168:206213.Google Scholar
21. Moreland, D. E. and Corbin, F. T. 1991. Influence of safeners on the in vivo and in vitro metabolism of bentazon and metolachlor by grain sorghum shoots: a preliminary report. Z. Naturforsch. 46c:906914.Google Scholar
22. Moreland, D. E. and Corbin, F. T. 1992. Safeners, herbicides, and grain sorghum microsomes. Proc. First Int. Weed Cont. Cong. II:350352.Google Scholar
23. Moreland, D. E., Corbin, F. T., and McFarland, J. E. 1993. Effects of safeners on the oxidation of multiple substrates by grain sorghum microsomes. Pestic. Biochem. Physiol. 45:4353.Google Scholar
24. Moreland, D. E., Corbin, F. T., and McFarland, J. E. 1993. Comparative properties of microsomes isolated from sorghum and corn shoots. Abstr. Weed Sci. Soc. Am. 33:211.Google Scholar
25. Mougin, C., Polge, N., Scalla, R., and Cabanne, F. 1991. Interactions of various agrochemicals with cytochrome P-450-dependent monooxygenases of wheat cells. Pestic. Biochem. Physiol. 40:111.CrossRefGoogle Scholar
26. Neighbors, S. and Privalle, L. S. 1990. Metabolism of primisulfuron by barnyard grass. Pestic. Biochem. Physiol. 37:145153.Google Scholar
27. Rahman, A. and James, T. K. 1993. Enhanced activity of nicosulfuron in combination with soil-applied insecticides in corn (Zea mays). Weed Technol. 7:824829.Google Scholar
28. Ray, T. B. 1984. Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis. Plant Physiol. 75:827831.Google Scholar
29. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinone: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
30. Shaner, D. L. and Reider, M. L. 1986. Physiological responses of corn (Zea mays) to AC 243,997 in combination with valine, leucine, and isoleucine. Pestic. Biochem. Physiol. 25:248257.Google Scholar
31. Singh, B. K., Stidham, M. A., and Shaner, D. L. 1988. Assay of acetohydroxyacid synthase. Anal. Biochem. 171:173179.CrossRefGoogle ScholarPubMed
32. Stidham, M. A. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39:428434.Google Scholar
33. Subramanian, M. V., Hung, H., Dias, J. M., Miner, V. W., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 94:239244.Google Scholar
34. Tucker, T. A., Langeland, K. A., and Corbin, F. T. 1994. Absorption and translocation of 14C-imazapyr and 14C-glyphosate in alligatorweed Alternanthera philoxeroides . Weed Technol. 8:3236.Google Scholar
35. Worsham, A. D. and Saunders, E. M. 1992. Method of application and formulation of terbufos and adverse interactions with nicosulfuron and primisulfuron. Proc. South. Weed Sci. Soc. 45:119.Google Scholar