Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T19:22:46.136Z Has data issue: false hasContentIssue false

Natural Tolerance to Imazethapyr in Red Rice (Oryza sativa)

Published online by Cambridge University Press:  20 January 2017

Yong I. Kuk
Affiliation:
Department of Plant Biotechnology, Chonnam National University, Gwangju 500–757, South Korea and University of Arkansas, 1366 W. Altheimer Drive, Fayetteville, AR 72704
Nilda R. Burgos*
Affiliation:
Department of Plant Biotechnology, Chonnam National University, Gwangju 500–757, South Korea and University of Arkansas, 1366 W. Altheimer Drive, Fayetteville, AR 72704
Vinod K. Shivrain
Affiliation:
Department of Plant Biotechnology, Chonnam National University, Gwangju 500–757, South Korea and University of Arkansas, 1366 W. Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: nburgos@uark.edu

Abstract

Red rice is a major weed problem in rice production of the southern United States and other rice-producing countries. One hundred thirty red rice accessions from 26 rice-growing counties in Arkansas were tested for tolerance to imazethapyr in seed- and whole-plant response bioassays. The red rice accessions were compared with imazethapyr-resistant (ClearfieldTM) rice cultivars (‘CL121’, ‘CL161’, and ‘CL-XL8’) and conventional rice cultivars (‘Bengal’, ‘Dongjin’, ‘Drew’, and ‘Wells’). Red rice accessions 79, 84, and 118 showed 17-, 48-, and 37-fold more tolerance to imazethapyr, respectively, than the standard susceptible red rice accession (82) in whole-plant bioassays. The imazethapyr-resistant rice cultivars, CL121, CL161, and CL-XL8 were 41-, >177-, and 48-fold more resistant to imazethapyr, respectively than the susceptible standard. The imazethapyr-tolerant red rice and ClearfieldTM cultivars were generally cross tolerant to other acetolactate synthase (ALS; EC 4.1.3.18) inhibiting herbicides such as imazapyr, imazaquin, imazamox, and pyrithiobac. The tolerance level of red rice or rice to imidazolinone herbicides was highest with imazaquin and lowest with imazapyr. The imazethapyr-tolerant red rice accessions and ClearfieldTM rice were susceptible to glufosinate and glyphosate. The ALS enzyme of tolerant red rice accessions was less sensitive to imazethapyr than the susceptible standard, but tolerance at the enzyme level was less than at the whole-plant level. Therefore, tolerance of red rice to imazethapyr may involve other mechanisms besides an insensitive target site. We learned that a few imazethapyr-tolerant red rice populations existed probably before ClearfieldTM rice was introduced, supporting the hypothesis that evolution of herbicide-resistant red rice populations can happen with intensive herbicide selection pressure.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Avila, L. A., Lee, D. J., Senseman, S. A., McCauley, G. N., Chandler, J. M., and Cothren, J. T. 2005. Assessment of acetolactate synthase (ALS) tolerance to imazethapyr in red rice ecotypes (Oryza spp.) and imidazolinone tolerant/resistant rice (Oryza sativa) varieties. Pest Manag. Sci. 61:171178.CrossRefGoogle ScholarPubMed
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Shiehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117385.Google Scholar
Burgos, N. R., Kuk, Y. I., and Talbert, R. E. 2001. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and A. hybridus to ALS-inhibitor herbicides. Pest Manag. Sci. 57:449457.Google Scholar
Burgos, N. R., Norman, R. J., Gealy, D. R., and Black, H. R. 2006. Competitive N uptake between rice and weedy rice. Field Crops Res. 99:96105.Google Scholar
Craigmiles, J. P. 1978. Introduction. in Eastin, E.F., ed. Red Rice, Research and Control. College Station, TX Texas Agricultural Experiment Station Bulletin B-1270. 5 and 6.Google Scholar
Croughan, T. P., Utomo, H. S., Sanders, D. E., and Braverman, M. P. 1996. Herbicide-resistant rice offers potential solution to red rice problem. La. Agric. 39:1012.Google Scholar
Delouche, J. C., Burgos, N. R., Gealy, D. R., Zorilla-San Martin, G., Labrada, R., and Larinde, M. 2006. Weedy rices—origin, biology, ecology and control. Rome, Italy Food and Agriculture Organization (FAO) of the United Nations. 122.Google Scholar
Diarra, A., Smith, R. J. Jr., and Talbert, R. E. 1985. Interference of red rice (Oryza sativa L.) with rice (O. Sativa). Weed Sci. 33:644649.CrossRefGoogle Scholar
Eleftherohorinos, I. G., Dhima, K. V., and Vasilakoglou, I. B. 2002. Interference of red rice in rice grown in Greece. Weed Sci. 50:167172.CrossRefGoogle Scholar
Gealy, D. R. and Black, H. L. 1998. Activity of glufosinate (Liberty) against red rice biotypes in glufosinate-resistant Gulfmont rice. in Norman, R.J. and Johnston, T.H., eds. B. R. Wells Rice Research Studies—1997. Fayetteville University of Arkansas Agriculture Experiment Station, Series 460. 4148.Google Scholar
Gealy, D. R. and Black, H. L. 1999. Effect of imazethapyr on several red rice (Oryza sativa L.) accessions and rice line. Proc. South. Weed Sci. Soc. 52:211.Google Scholar
Gealy, D. R., Tai, T. H., and Sneller, C. H. 2002. Identification of red rice, rice, and hybrid populations using microsatellite markers. Weed Sci. 50:333339.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.Google Scholar
Griffin, J. L., Baker, J. B., Dunand, R. T., and Sonnier, E. A. 1986. Red rice control in rice and soybeans in southwest Louisiana. Baton Rouge, LA Louisiana State University Agricultural Center Publication 776.Google Scholar
Hattori, J., Brown, D., Mourad, G., Labbe, H., Oueller, T., Sunohara, G., Rutledge, R., King, J., and Miki, B. 1995. An acetohydroxyacid mutant reveals a single site involved in multiple herbicide resistance. Mol. Gen. Genet. 246:419425.CrossRefGoogle Scholar
Hwang, I. T., Lee, K. H., Park, S. H., Lee, B. H., Hong, K. S., Han, S. S., and Cho, K. Y. 2001. Resistance to acetolactate sythanse inhibitors in a biotype of Monochoria vaginalis discovered in Korea. Pestic. Biochem. Physiol. 71:6976.Google Scholar
Kuk, Y. I., Jung, H. I., Kwon, O. D., Lee, D. J., Burgos, N. R., and Guh, J. O. 2003. Sulfonylurea herbicide-resistant Monochoria vaginalis in Korean rice culture. Pest Manag. Sci. 59:949961.Google Scholar
Kuk, Y. I., Kim, K. H., Kwon, O. D., Lee, D. J., Burgos, N. R., Jung, S., and Guh, J. O. 2004. Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Manag. Sci. 60:8594.CrossRefGoogle ScholarPubMed
Kuk, Y. I., Kwon, O. D., Jung, H. I., Burgos, N. R., and Guh, J. O. 2002. Cross-resistance pattern and alternative herbicides for Rotala indica resistant to imazosulfuron in Korea. Pestic. Biochem. Physiol. 74:129138.Google Scholar
Kwon, S. L., Smith, R. J. Jr., and Talbert, R. E. 1991. Interference of red rice (Oryza sativa L.) densities in rice (O. sativa). Weed Sci. 39:169174.Google Scholar
Lago, A. 1982. Characterization of red rice (Oryza sativa L.) phenotypes in Mississippi. . Mississippi State, MS Mississippi State University. 143.Google Scholar
Levy, R. J. Jr., Bond, J. A., Webster, E. P., Griffin, J. L., Zhang, W. P., and Linscombe, S. D. 2006. Imidazolinone-tolerant rice response to imazethapyr application. Weed Technol. 20:389393.CrossRefGoogle Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
Noldin, J. A., Chandler, J. M., Ketchersid, M. L., and McCauley, G. N. 1999. Red rice (Oryza sativa) biology. II. Ecotype sensitivity to herbicides. Weed Technol. 13:1924.Google Scholar
Norsworthy, J. K., Burgos, N. R., Scott, R. C., and Smith, K. L. 2007. Consultant perspectives on weed management needs in Arkansas rice. Weed Technol. 21:832839.CrossRefGoogle Scholar
Ottis, B. V., O'-Barr, J. H., McCauley, G. N., and Chandler, J. M. 2004. Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on coarse-textured soils. Weed Technol. 18:10961100.Google Scholar
Ottis, B. V., Smith, K. L., Scott, R. C., and Talbert, R. E. 2005. Rice (Oryza sativa L.), yield and quality as affected by cultivar and red rice (Oryza sativa L.) density. Weed Sci. 53:499504.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase-inhibitor herbicides. in Powles, S.B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL Lewis Publishers. 83139.Google Scholar
SAS 2005. SAS Guide, Version 8. Cary, NC SAS Institute. [Electronic version].Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1991. Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol. 97:10441050.CrossRefGoogle ScholarPubMed
Shivrain, V. K. 2004. Phenotypic characterization and natural variation in the ALS gene of red rice. . Fayetteville, AR University of Arkansas. 180.Google Scholar
Shivrain, V. K., Burgos, N. R., Moldenhauer, K. A. K., Mcnew, R. W., and Baldwin, T. L. 2006. Characterization of spontaneous crosses between clearfield rice (Oryza sativa) and red rice (Oryza sativa). Weed Technol. 20:576584.CrossRefGoogle Scholar
Steele, G. L., Chandler, J. M., and McCauley, G. N. 2002. Control of red rice (Oryza sativa) in imidazolinone-tolerant rice (O. sativa). Weed Technol. 16:627630.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Vasilakoglou, I. and Dhima, K. 2005. Red rice (Oryza sativa L.) and barnyardgrass (Echinochloa spp.) biotype susceptibility to postemergence-applied imazamox. Weed Biology and Management. 5:4652.Google Scholar
Vaughan, L. K., Ottis, B. V., Prazak-Havey, A. M., Sneller, C., Chandler, J. M., and Park, W. D. 2001. Is all red rice found in commercial rice really Oryza sativa? Weed Sci. 49:468476.Google Scholar
Webster, E. P. and Masson, J. A. 2001. Acetolactate synthase-inhibiting herbicides on imidazolinone-tolerant rice. Weed Sci. 49:652657.CrossRefGoogle Scholar
Westerfeld, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2006. ALS resistance in several smooth pigweed (Amaranthus hybridus) biotypes. Weed Sci. 54:828832.CrossRefGoogle Scholar
Zhang, W., Linscombe, S. D., Webster, E., Tan, S., and Oard, J. 2006. Risk assessment of the transfer of imazethapyr herbicide tolerance from Clearfield rice to red rice (Oryza sativa). Euphytica. 152:7586.Google Scholar