Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:36:37.892Z Has data issue: false hasContentIssue false

Molecular markers indicate intraspecific variation in the control of Echinochloa spp. with quinclorac

Published online by Cambridge University Press:  12 June 2017

Antonio Pujadas Salva
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales. E.T.S.I.A.M. Apdo. 3048, 14080-Cordoba, Spain
Robert P. Finch
Affiliation:
Scottish Agricultural College, Auchincruive, Ayr KA6 5HW, Scotland, U.K.
George Marshall
Affiliation:
Scottish Agricultural College, Auchincruive, Ayr KA6 5HW, Scotland, U.K.
Rafael De Prado
Affiliation:
Departamento de Quimica Agricola y Edafologia. E.T.S.I.A.M. Apdo. 3048, 14080-Cordoba, Spain

Extract

Some species of the genus Echinochloa are troublesome weeds in rice fields. The taxonomy of this genus leads to confusion in many cases due to its great morphological diversity. Because of the differential sensitivity to the herbicide quinclorac shown by Echinochloa spp., it was necessary to assess the botanical and molecular characterization of this weed. Echinochloa colonum, E. oryzoides, and E. oryzicola were very susceptible to quinclorac treatment; by contrast, E. crus-galli and E. hispidula showed some degree of natural tolerance. Physiological and molecular results agreed with the botanical classification of the genus Echinochloa in Flora Europea. The importance of these results is due to yield losses produced by the infestation of Echinochloa and the need for a strategy for Echinochloa management depending on the distribution of the Echinochloa species.

Type
Weed Biology and Ecology
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, W. R. and Fairbanks, D. J. 1990. Molecular markers: important tools for plant genetic resource characterization. Diversity 6:5153.Google Scholar
Carretero, J. L. 1981. El genero Echinochloa en el Suroeste de Europa. Anales J. Bot. Mad. 38:91108.Google Scholar
Carretero, J. L. 1989. Variacion en la sensibilidad al propanil del genero Echinochloa de los arrozales valencianos (España). Pages 407411 in Proceedings of the 4th EWRS Mediterranean Symposium.Google Scholar
Clayton, W. D. 1980. Echinochloa . Pages 261262 in Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., and Weeb, D. A., eds. Flora Europea. Volume 5. Cambridge: Cambridge University Press.Google Scholar
Clayton, W. D. and Renvoize, S. A. 1986. Genera Graminium. Grasses of the world. Pages 280281 in Cope, T. A., ed. London: Royal Botanic Gardens, Kew.Google Scholar
Coutinho, P. 1939. Flora do Portugal (Plantas vasculares) disposta em Chaves dichotomicas. Pages 7576 in Palhinha, R. T., ed. Lisboa: Ministério da Educaçáo Nacional.Google Scholar
Dawson, I. K., Chalmers, K. J., Waugh, R., and Powell, W. 1993. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol. 2:151159.Google Scholar
De Prado, R., Dominguez, C., and Tena, M. 1989. Characterization of triazine-resistant biotypes of common lambsquarters, hairy fleabane, and yellow foxtail found in Spain. Weed Sci. 37:14.CrossRefGoogle Scholar
De Prado, R., Sanchez, M., Jorrin, J., and Dominguez, C. 1992. Negative cross-resistance to bentazon and pyridate in Amaranthus cruentus and Amaranthus hybridus . Pestic. Sci. 35:131136.CrossRefGoogle Scholar
Devesa, J. 1987. Echinochloa Beauv. Pages 402403 in Valdes, B., Talavera, S., and Galiano, E. F., eds. Flora Vascular de Andalucia. Barcelona: Ed. Detres.Google Scholar
Gonzalez-Andres, F., Pita, J. M., and Ortiz, J. M. 1996. Caryopsis isoenzymes of Echinochloa weed species as an aid for taxonomic discrimination. J. Hortic. Sci. 71:187193.Google Scholar
Gould, F. W., Ali, M. A., and Fairbrothers, D. E. 1972. A revision of Echinochloa in the United States. Am. Midl. Nat. 87:3659.Google Scholar
Gower, J. C. 1985. Measures of similarity, dissimilarity and distance. Pages 397405 in Kotz, S., Johnson, N. L., and Read, C. R., eds. Encyclopaedia of Statistical Sciences. Volume 5. New York: Wiley.Google Scholar
Lopez-Martinez, N., Finch, R. P., Marshall, G., and De Prado, R. 1995. A molecular assessment of genetic diversity in Echinochloa spp. Pages 445450 in Proceedings of the Brighton Crop Protection Conference—Weeds. Volume 2. Farnham, U.K.: Brighton Crop Protection Council.Google Scholar
Lopez-Martinez, N., Finch, R. P., Marshall, G., and De Prado, R. 1997. A biochemical, physiological and molecular characterization of herbicide resistance in Echinochloa spp. Pages 199205 in Des Prado, R., Garcia-Torres, L., and Jorrin, J., eds. Weed and Crop Resistance to Herbicides. Netherlands: Kluwer Publisher.CrossRefGoogle Scholar
McNeill, J. 1982. Problems of weed taxonomy. Pages 3545 in Holzner, W. and Numata, N., eds. Biology and Ecology of Weeds. The Hague: Dr. W. Junk Publishers.CrossRefGoogle Scholar
Michael, P. W. 1983. Taxonomy and distribution of Echinochloa species with special reference to their occurrence as weeds in rice. Pages 291306 in Weed Control in Rice. Manila, Philippines: International Rice Research Institute.Google Scholar
Moodie, M., Finch, R. P., and Marshall, G. 1997. Analysis of genetic variation in wild mustard (Sinapis arvensis) using molecular markers. Weed Sci. 45:102107.Google Scholar
Mulligan, G. A. and Findlay, J. N. 1974. The biology of Canadian weeds. 3. Cardabia draba, C. chalepensis, and C. pusbences . Can. J. Plant. Sci. 54:149160.CrossRefGoogle Scholar
Paunero, E. 1962. Las paniceas españolas. Anales Inst. Bot. Cavanilles 20:7083.Google Scholar
Poulsen, G. B., Kahl, G., and Weising, K. 1993. Abundance and polymorphism of simple repetitive DNA sequences in Brassica napus L. Theor. Appl. Genet. 85:9941000.Google Scholar
VanDevender, K. W., Costello, T. A., and Smith, R. J. Jr. 1997. Model of rice (Oryza sativa) yield reduction as a function of weed interference. Weed Sci. 45:218224.CrossRefGoogle Scholar
Warwick, S. I. and Weaver, S. E. 1980. Atrazine resistance in Amaranthus retroflexus (redroot pigweed) and A. powellii (green pigweed) from southern Ontario. Can. J. Plant Sci. 60:14851488.Google Scholar
Waugh, R. and Powell, W. 1992. Using RAPD markers for crop improvement. Trends Biotechnol. 10:186191.Google Scholar
Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:72137218.Google Scholar
Williams, J.G.K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:65316535.CrossRefGoogle ScholarPubMed