Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T16:49:08.571Z Has data issue: false hasContentIssue false

Mitotic Disrupter Herbicides

Published online by Cambridge University Press:  12 June 2017

Kevin C. Vaughn
Affiliation:
South. Weed Sci. Lab., Agric. Res. Serv., U.S. Dep. Agric., Stoneville, MS
Larry P. Lehnen Jr.
Affiliation:
Australian Nat. Univ., Canberra, ACT, Australia

Abstract

Approximately one-quarter of all herbicides that have been marketed affect mitosis as a primary mechanism of action. All of these herbicides appear to interact directly or indirectly with the microtubule. Dinitroaniline and phosphoric amide herbicides inhibit microtubule polymerization from free tubulin subunits. Because of the loss of spindle and kinetochore microtubules, chromosomes cannot move to the poles during mitosis, resulting in cells exhibiting an arrested prometaphase configuration. Nuclear membranes re-form around the chromosomal masses to form lobed nuclei. Cortical microtubules, which influence cell shape, are also absent, and, as a result, the cell expands isodiametrically. In root tips and other structures that are normally elongated, these herbicides induce a characteristic club-shaped swelling. Pronamide and MON 7200 induce similar effects, except that tufts of microtubules remain at the kinetochore region of the chromosomes. The carbamate herbicides barban, propham, and chlorpropham alter the organization of the spindle microtubules so that multiple spindles are formed. Chromosomes move to many poles and multiple nuclei result. Abnormal branched cell walls partly separate the nuclei. Terbutol induces “star anaphase” chromosome configurations in which the chromosomes are drawn into an area at the poles in a star-like aggregation. DCPA's most dramatic effect is on phragmoplast microtubule arrays. Multiple, branched, and curved phragmoplasts are found after herbicide treatment. These disrupters should prove to be useful tools in investigations of the proteins and structures required for a successful cell division.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Akashi, T., Izumi, K., Nagano, E., Enomoto, M., Mizuno, K., and Shibaoka, H. 1988. Effects of propyzamide on tobacco cell microtubules in vivo and in vitro . Plant Cell Physiol. 29:10531062.Google Scholar
2. Bartels, P. G. and Hilton, J. L. 1973. Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3:462472.CrossRefGoogle Scholar
3. Cleary, A. L. and Hardham, A. R. 1988. Depolymerization of microtubule arrays in root tip cells by oryzalin and their recovery with modified nucleation patterns. Can. J. Bot. 66:23532366.Google Scholar
4. Cyr, R. J. and Palevitz, B. A. 1989. Microtubule-binding proteins from carrot. I. Initial characterization and microtubule bundling. Planta 177:245260.Google Scholar
5. Falconer, M. M., Donaldson, G., and Seagull, R. W. 1988. MTOCs in higher plant cells: an immunofluorescent study of microtubule assembly sites following depolymerization of APM. Protoplasma 144:4655.Google Scholar
6. Hepler, P. K. 1980. Membranes in the mitotic apparatus of barley. J. Cell Biol. 86:490499.CrossRefGoogle ScholarPubMed
7. Hepler, P. K. and Jackson, W. T. 1989. Isopropyl N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells of Haemanthus katherinae Baker. J. Cell Sci. 5:727743.Google Scholar
8. Hess, F. D. 1987. Herbicide effects on the cell cycle of meristematic plant cells. Rev. Weed Sci. 3:183203.Google Scholar
9. Hess, F. D. and Bayer, D. E. 1977. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell Sci. 24:351360.CrossRefGoogle ScholarPubMed
10. Hilton, J. L. and Christiansen, M. N. 1972. Lipid contribution to selective action of trifluralin. Weed Sci. 20:290294.CrossRefGoogle Scholar
11. Holmsen, J. D. and Hess, F. D. 1984. Growth inhibition and disruption of mitosis by DCPA in oat (Avena sativa) roots. Weed Sci. 32:732738.Google Scholar
12. Holmsen, J. D. and Hess, F. D. 1985. Comparison of the disruption of mitosis and cell plate formation in oat roots by DCPA, colchicine and propham. J. Exp. Bot. 36:15041513.CrossRefGoogle Scholar
13. Lehnen, L. P. Jr. and Vaughn, K. C. 1989. Microtubule disruption in onion root tips after treatment with MON 7200 herbicide. Plant Physiol. 89s:144.Google Scholar
14. Lehnen, L. P., Vaughan, M. A., and Vaughn, K. C. 1990. Terbutol affects spindle microtubule organizing centers. J. Exp. Bot. 41:537546.Google Scholar
15. Merlin, G., Nuret, F., Ravanel, P., Bastide, J., Coste, C., and Tissut, M. 1987. Mitosis inhibition by a N-(1,1-dimethylpropynl) benzamide series. Phytochemistry 26:15671571.CrossRefGoogle Scholar
16. Mitchison, T. J. and Kirschner, M. 1984. Dynamic instability of microtubule growth. Nature 312:237242.Google Scholar
17. Molin, W. T., Armbruster, B. L., Porter, C. A., and Bugg, M. W. 1988. Inhibition of microtubule polymerization by MON 7200. Weed Sci. Soc. Am. Abstr. 28:69.Google Scholar
18. Molin, W. T., Lee, T. C., and Bugg, M. W. 1988. Purification of a protein which binds MON 7200. Weed Sci. Soc. Am. Abstr. 28:69.Google Scholar
19. Morejohn, L. C. and Fosket, D. E. 1984. Inhibition of plant microtubule polymerization in vitro by the phosphoric amide herbicide amiprophosmethyl. Science 224:874876.Google Scholar
20. Morejohn, L. C., Bureau, T. E., Mole-Bajer, J., Bajer, A. S., and Fosket, D. E. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252264.Google Scholar
21. Morejohn, L. C. and Fosket, D. E. 1986. Tubulin from plants, fungi and protists: a review. Pages 257264 in Shay, J. W., ed. Cell and Molecular Biology of the Cytoskeleton. Plenum Press, New York.Google Scholar
22. Ray, T. B. 1982. The mode of action of chlorsulfuron: a new herbicide for cereals. Pestic. Biochem. Biochem. Physiol. 17:1017.Google Scholar
23. Sterett, R. B. and Fretz, T. A. 1975. Asulam-induced mitotic irregularities in onion root tips. Hortic. Sci. 10:161162.Google Scholar
24. Strachan, S. D. and Hess, F. D. 1983. The biochemical mechanism of action of the dinitroaniline herbicide oryzalin. Pestic. Biochem. Physiol. 20:141150.Google Scholar
25. Sumida, S. and Ueda, M. 1976. Effects of O-ethyl O-(3-methyl-6-nitrophenyl) N-sec-butylphosphoro-thioamidate (S-2846), an experimental herbicide, on mitosis in Allium cepa . Plant Cell Physiol. 17:13511354.Google Scholar
26. Tissut, M., Aspe, D., Meallier, P., and Coste, C. 1983. Effects physiologiques et biochimiques d'analogues de l'herbicide propyzamide. Physiol. Veg. 21:689699.Google Scholar
27. Tissut, M., Nurit, F., Ravanel, P., Mona, S., Benevides, N., and Macheral, D. 1986. Herbicidal modes of action depending on substitution in a phenylcarbamate series. Physiol. Veg. 24:523535.Google Scholar
28. Vaughan, M. A. and Vaughn, K. C. 1987. Pronamide disrupts mitosis in a unique manner. Pestic. Biochem. Physiol. 28:182193.Google Scholar
29. Vaughan, M. A. and Vaughn, K. C. 1990. DCPA causes cell plate disruption in wheat roots. Ann. Bot. 65:379388.CrossRefGoogle Scholar
30. Vaughn, K. C. 1986. Cytological studies of dinitroaniline-resistant Eleusine . Pestic. Biochem. Physiol. 26:6674.Google Scholar
31. Vaughn, K. C., Lehnen, L. P., and Vaughan, M. A. 1989. Terbutol induces changes in the spindle microtubule organizing center (MTOC). Plant Physiol. 89s:43.Google Scholar
32. Vaughn, K. C., Marks, M. D., and Weeks, D. P. 1987. A dinitroaniline-resistant mutant of Eleusine indica exhibits cross-resistance and supersensitivity to antimicrotubule herbicides and drugs. Plant Physiol. 83:956964.Google Scholar
33. Vaughn, K. C. and Vaughan, M. A. 1988. Mitotic disrupters from higher plants. Effects on plant cells. Am. Chem. Soc. Symp. 380:273293.Google Scholar
34. Vaughn, K. C. and Vaughan, M. A. 1990. Structural and biochemical characterization of dinitroaniline-resistant Eleusine . Am. Chem. Soc. Symp. Ser. 421:364375.Google Scholar