Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:55:46.076Z Has data issue: false hasContentIssue false

Efficacy of Imazaquin on Various Weed Species

Published online by Cambridge University Press:  12 June 2017

Mark A. Risley
Affiliation:
Dep. Agron., Univ. Arkansas, Fayetteville, AR 72701
Lawrence R. Oliver
Affiliation:
Dep. Agron., Univ. Arkansas, Fayetteville, AR 72701

Abstract

Field and laboratory investigations were conducted from 1983 through 1985 to evaluate morphological and environmental influences on the performance of imazaquin on 26 weed species common to the Mississippi Delta. Imazaquin applied preplant incorporated or preemergence at 140 g ai ha–1 controlled 16 species but controlled only five species at 140 g ha–1 foliar applied. Contour graphs accurately predicted imazaquin postemergence rates necessary to control a given weed species at a given time after emergence. Imazaquin applied preemergence with a sequential postemergence application controlled entireleaf morningglory and sicklepod better than a single soil application. Imazaquin at 140 g ha–1 applied preemergence required at least 50 mm of supplemental water following application to control sicklepod and was more phytotoxic to sicklepod grown at 25/10 C day/night temperatures than those grown at 32/22 C.

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1991 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Baldwin, F. L., Oliver, L. R., Keisling, T. C., and Stone, J. L. 1987. A computer program for making weed management decisions in soybeans. Abstr. Weed Sci. Soc. Am. 27:3536.Google Scholar
2. Banks, V. E., Oliver, L. R., and McClelland, M. 1988. Influence of soybean oil carrier and method of application on weed control in soybeans (Glycine max). Weed Sci. 36:504509.CrossRefGoogle Scholar
3. Barrentine, W. L. 1989. Minimum effective rate of chlorimuron and imazaquin applied to common cocklebur (Xanthium strumarium). Weed Technol. 3:126130.CrossRefGoogle Scholar
4. Basham, G., Lavy, T. L., Oliver, L. R., and Scott, H. D. 1987. Imazaquin persistence and mobility in three Arkansas soils. Weed Sci. 35:576582.CrossRefGoogle Scholar
5. Congleton, W. F., VanCantfort, A. M., and Lignowski, E. M. 1987. Imazaquin (Scepter)®: A new soybean herbicide. Weed Technol. 1:186188.CrossRefGoogle Scholar
6. Eaton, B. J., Russ, O. G., and Feltner, K. C. 1976. Competition of velvetleaf, prickly sida, and Venice mallow in soybeans. Weed Sci. 24:224228.CrossRefGoogle Scholar
7. Edmund, R. M. Jr. and York, A. C. 1987. Effects of rainfall and temperature on postemergence control of sicklepod (Cassia obtusifolia) with imazaquin and DPX-F6025. Weed Sci. 35:231236.CrossRefGoogle Scholar
8. Goetz, A. J., Wehtje, G., Walker, R. H., and Hajek, B. 1986. Soil solution and mobility characterization of imazaquin. Weed Sci. 34:788793.CrossRefGoogle Scholar
9. Griffin, J. L. and Habetz, R. J. 1989. Soybean (Glycine max) tolerance to preemergence and postemergence herbicides. Weed Technol. 3:459462.CrossRefGoogle Scholar
10. Klingman, G. C. and Ashton, F. M. 1975. Page 73 in Weed Science: Principles and Practices. John Wiley and Sons, New York. 430.Google Scholar
11. Lee, S. D. and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds: Times and methods for application. Weed Sci. 30:520526.CrossRefGoogle Scholar
12. Malefyt, T. and Shaner, L. 1986. The effect of temperature on AC-263,499 in soybeans and alfalfa. Abstr. Weed Sci. Soc. Am. 26:7172.Google Scholar
13. Oliver, L. R., Frans, R. E., and Talbert, R. E. 1976. Field competition between tall morningglory and soybeans. I. Growth analysis. Weed Sci. 24:482488.CrossRefGoogle Scholar
14. Oliver, L. R., Youmans, C. D., and Risley, M. A. 1986. Reduced herbicide rates in soybeans. Abstr. Weed Sci. Soc. Am. 26:10.Google Scholar
15. Renner, K. A., Meggitt, W. F., and Leavitt, R. A. 1988. Influence of rate, method of application, and tillage on imazaquin persistence in soil. Weed Sci. 36:9095.CrossRefGoogle Scholar
16. Retzinger, E. J. Jr. and Rogers, R. L. 1986. Effect of imazaquin on eight of the most troublesome weeds in Louisiana. Abstr. Weed Sci. Soc. Am. 26:2.Google Scholar
17. Retzinger, E. J. Jr., Rogers, R. L., and Richard, P. A. 1984. Weed control in soybeans with AC-252,214. Proc. South. Weed Sci. Soc. 37:71.Google Scholar
18. Shaner, D. L. and Robson, P. A. 1985. Adsorption, translocation, and metabolism of AC 252,214 in soybean (Glycine max), common cocklebur (Xanthium strumarium), and velvetleaf (Abutilon theophrasti). Weed Sci. 33:469471.CrossRefGoogle Scholar
19. Statistical Analysis Systems (Version 5), SAS Inst., Inc. 950.Google Scholar
20. Teem, D. S., Hoveland, C. S., and Buchanan, G. A. 1980. Sicklepod (Cassia obtusifolia) and coffee senna (Cassia occidentalis). Geographic distribution, germination, and emergence. Weed Sci. 28:6871.CrossRefGoogle Scholar
21. Thurlow, D. L. and Buchanan, G. A. 1972. Competition of sicklepod with soybeans. Weed Sci. 20:379384.CrossRefGoogle Scholar
22. Umeda, K., Malefyt, T., Marc, D. A., and Orwick, D. L. 1984. Optimum timing of application of Scepter soybean herbicide for sicklepod (Cassia obtusifolia) and hemp sesbania (Sesbania exaltata) control: Greenhouse studies. Proc. South. Weed Sci. Soc. 37:67.Google Scholar
23. Wesley, R. A., Shaw, D. R., and Barrentine, W. L. 1989. Application timing of metribuzin, chlorimuron, and imazaquin for common cocklebur (Xanthium strumarium) control. Weed Technol. 3:364368.CrossRefGoogle Scholar