Published online by Cambridge University Press: 12 June 2017
The robustness of competitive attributes of cereals such as rapid and uniform seedling emergence, tillering, early biomass accumulation and canopy closure, and height advantage over weeds have not yet been tested under environmental conditions typical of no-till (NT) cropping systems. Our objective was to evaluate the effects or NT practices on growth and productivity of Avena sativa, Triticum aestivum, Hordeum vulgare, and associated weeds. The experiment was conducted on a Kamouraska clay at La Pocatière, QC, in 1994, 1995, and 1996. Avena sativa, T. aestivum, and H. vulgare were grown under tilled and NT practices. Cereal growth parameters were measured six (1994) or seven (1995) times between planting and the 11th week after planting but only once in 1996. Grain yields and yield components were determined at crop maturity. Avena sativa and H. vulgare populations were little affected by tillage, whereas T. aestivum populations were reduced by 16 to 20% in NT systems. Growth in height in NT systems was either similar or greater than in tilled systems in all three cereals. Cereal leaf area index (LAI) and biomass accumulation was also comparable between tillage systems, except for T. aestivum LAI in 1994, which was greater in tilled plots on two sampling dates. Response of annual dicots to tillage was inconsistent in all crops. Annual monocots dominated in some but not all NT systems. Perennial dicots dominated in NT systems, whereas perennial monocots were more abundant in tilled systems in all three cereals. Avena sativa and T. aestivum yields in NT plots were comparable or greater than in tilled plots, in spite of having either lower test weights (A. sativa) or lower 1,000-grain weights (T. aestivum). NT T. aestivum productivity was maintained in spite of reduced plant establishment. Hordeum vulgare yields were also similar across tillage systems, except in 1995, when yields in tilled plots were greater than in NT plots. The height advantage observed for NT H. vulgare did not result in improved yields. All three cereals, and particularly A. sativa, appeared well suited to NT systems, despite the pressure provided by different weed groups, compared to tilled systems. However, results suggest that NT production of cereals could benefit from improved attention to perennial dicot control and crop seedling establishment, particularly for T. aestivum.
For the Department of Agriculture and Agri-Food, Government of Canada © Minister of Public Works and Government Services Canada 1999