Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:43:58.124Z Has data issue: false hasContentIssue false

Characterization of Acifluorfen Tolerance in Selected Somaclones of Eastern Black Nightshade (Solanum ptycanthum)

Published online by Cambridge University Press:  12 June 2017

Chang-Yeon Yu
Affiliation:
Dep. Hortic., Univ. Illinois, 1201 W. Gregory Dr., Urbana, IL 61801
John B. Masiunas
Affiliation:
Dep. Hortic., Univ. Illinois, 1201 W. Gregory Dr., Urbana, IL 61801

Abstract

Acifluorfen tolerance in eastern black nightshade somaclones was characterized in two experiments. One experiment determined the involvement of absorption, translocation, and metabolism in acifluorfen tolerance. Less than 6% of the applied 14C-acifluorfen was absorbed. There were no differences in acifluorfen absorption between susceptible and tolerant somaclones. More 14C-acifluorfen was translocated in the susceptible than the tolerant somaclones. The susceptible somaclone did not metabolize acifluorfen while some somaclones (i.e., EBN-3A) metabolized 14C-acifluorfen. A second experiment determined the tolerance of the somaclones to oxyfluorfen, diquat, and paraquat Most acifluorfen-tolerant somaclones were tolerant to oxyfluorfen but were susceptible to diquat and paraquat One somaclone, EBN-3A, was extremely tolerant to acifluorfen, paraquat, and diquat.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1992 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Becerril, J. M. and Duke, S. O. 1989. Chlorophyll synthesis in green cucumber cotyledon tissues. Pestic. Biochem. Physiol. 35:119126.Google Scholar
2. Deak, M., Donn, G., Feher, A., and Dudits, D. 1988. Dominant expression of a gene amplification related herbicide resistance in Medicago cell hybrids. Plant Cell Rep. 7:158161.Google Scholar
3. Donn, G., Tischer, E., Smith, J. A., and Goodman, H. A. 1984. Herbicide-resistant alfalfa cells: an example of gene amplification in plants. J. Mol. Appl. Genet. 2:621635.Google Scholar
4. Frear, D. S. and Swanson, H. R. 1973. Metabolism of substituted diphenylether herbicides in plants. I. Enzymatic cleavage of fluorodiphen in peas, Pestic. Biochem. Physiol. 3:473483.Google Scholar
5. Frear, D. S., Swanson, H. R., and Mansager, E. R. 1983. Acifluorfen metabolism in soybean: Diphenyl ether bond cleavage and the formation of homoglutathione, cystein, and glucose conjugate. Pestic. Biochem. Physiol. 20:299310.Google Scholar
6. Fuerst, E. P. and Vaughan, K. C. 1990. Mechanisms of paraquat resistance. Weed Technol. 4:150156.CrossRefGoogle Scholar
7. Gorski, S. F. and Wertz, M. K. 1987. Tomato (Lycopersicon esculentum) and eastern black nightshade (Solanum ptycanthum) tolerance to acifluorfen. Weed Technol. 1:278281.CrossRefGoogle Scholar
8. Halliwell, B. 1982. Ascorbic acid in the illuminated chloroplast. Pages 263274 in Seb, P. A. and Tolbert, B. M., eds. Ascorbic acid: chemistry, metabolism, and uses. Adv. Chem. Google Scholar
9. Halliwell, B. and Gutteridge, J.M.C. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:14.Google Scholar
10. Haworth, P. and Hess, F. D. 1988. The generation of singlet oxygen (1O2) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis. Plant Physiol. 86:672676.Google Scholar
11. Higgins, J. M., Whitwell, T., Corbin, F. T., Carter, G. E., and Hill, H. S. 1988. Absorption, translocation, and metabolism of acifluorfen and lactofen in pitted morningglory (Ipomoea lacunosa) and ivyleaf morningglory (Ipomoea hederacea). Weed Sci. 36:141145.Google Scholar
12. Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.CrossRefGoogle Scholar
13. Hughes, K. W. 1983. Selection for herbicide resistance. Pages 443460 in Evans, D. A., Sharp, W. R., Ammirato, P. V., and Yamada, Y., eds. Handbook of Plant Cell Culture. Vol. 1. The MacMillan Co., New York.Google Scholar
14. Kunert, K. J. and Boger, P. 1987. The bleaching effect of the diphenyl ether herbicide oxyfluorfen. Weed Sci. 29:169173.Google Scholar
15. Lambert, R., Sandmann, G., and Boger, P. 1984. Radical formation and peroxidative activity of phytotoxic diphenyl ethers. Z. Naturforsch. 39:486491.Google Scholar
16. LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops. Pages 336352 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals. ACS, Washington, DC.Google Scholar
17. Matringe, M. and Scalla, R. 1987. Photoreceptors and respiratory electron flow involvement in the activity of acifluorfen-methyl and LS82–556 on nonchlorophyllous soybean cells. Pestic. Biochem. Physiol. 27:267274.Google Scholar
18. Moss, S. R. 1990. Herbicide cross-resistance in slender foxtail (Alopecurus myosuroides). Weed Sci. 38:492496.Google Scholar
19. Orr, G. L. and Hess, F. D. 1982. Mechanism of action of the diphenyl ether herbicide acifluorfen-methyl in excised cucumber (Cucumis sativus L.) cotyledons. Light activation and the subsequent formation of lipophilic free radicals. Plant Physiol. 69:502507.Google Scholar
20. Orr, G. L. and Hogan, M. E. 1983. Enhancement of superoxide production in vivo by the diphenyl ether herbicide nitrofen. Pestic. Biochem. Physiol. 20:310318.CrossRefGoogle Scholar
21. Ricotta, J. A. and Masiunas, J. B. 1992. Relationship of leaf surface characteristics to acifluorfen tolerance in tomato (Lycopersicon esculentum) and related species. Weed Sci. 40:402407.Google Scholar
22. Ritter, R. L. and Coble, H. D. 1981. Penetration, translocation, and metabolism of acifluorfen in soybean (Glycine max), common ragweed (Ambrosia artemisifolia), and common cocklebur (Xanthium pensylvanicum). Weed Sci. 29:474480.Google Scholar
23. Saxena, P. K. and King, J. 1988. Herbicide resistance in Datura innoxia . Plant Physiol. 86:863867.CrossRefGoogle ScholarPubMed
24. Schulz, A., Wegenmayer, F., and Goodman, H. M. 1990. Genetic engineering of herbicide resistance in higher plants. Crit. Rev. Plant Sci. 9:115.Google Scholar
25. Sherman, T. D., Becerril, J. M., Matsumoto, H., Duke, M. V., Jacobs, J. M., Jacobs, N. J., and Duke, S. O. 1991. Physiological basis for differential sensitivities of plant species to protoporphyrinogeninhibiting herbicides. Plant Physiol. 97:280287.Google Scholar
26. Shimabukuro, R. H. and Hoffer, B. L. 1991. Metabolism of diclofopmethyl in susceptible and resistant biotypes of Lolium rigidum . Pestic. Biochem. Physiol. 39:251260.Google Scholar
27. Singer, S. R. and McDaniel, C. N. 1985. Selection of glyphosate-tolerant tobacco calli and the expression of this tolerance in regenerated plants. Plant Physiol. 78:411416.Google Scholar
28. Smith, C. M., Pratt, D., and Thompson, G. A. 1986. Increased 5-enolpyruvylshikimic acid 3-phosphate synthase activity in a glyphosate-tolerant variant strain of tomato cells. Plant Cell Rep. 5:198301.Google Scholar
29. Teasdale, J. R. 1987. Selectivity of diphenyl ether herbicides between tomato (Lycopersicon esculentum) and eastern black nightshade (Solanum ptycanthum). Weed Technol. 1:165167.Google Scholar
30. Vaughn, K. C., Vaughn, M. A., and Camilleri, P. 1989. Lack of cross-resistance of paraquat-resistant hairy fleabane (Conyza bonariensis) to other toxic oxygen generators indicates enzymatic protection is not the resistance mechanism. Weed Sci. 37:511.Google Scholar
31. Witkowski, D. A. and Hailing, B. P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90:12391242.Google Scholar
32. Yu, C. Y. 1991. An in vitro system for selection and characterization of acifluorfen-tolerant Solanaceous plants. Ph.D. Thesis, Univ. Illinois, Urbana-Champaign. 161 pp.Google Scholar