Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T00:55:24.336Z Has data issue: false hasContentIssue false

Changes in the Prevalence of Weed Species in the Major Agronomic Crops of the Southern United States: 1994/1995 to 2008/2009

Published online by Cambridge University Press:  20 January 2017

Theodore M. Webster*
Affiliation:
Crop Protection and Management Research Unit, U.S. Department of Agriculture–Agricultural Research Service, Tifton, GA 31794
Robert L. Nichols
Affiliation:
Cotton Incorporated, Cary, NC 27513
*
Corresponding author's E-mail: ted.webster@ars.usda.gov

Abstract

Changes in the weed flora of cropping systems reflect the impacts of factors that create safe sites for weed establishment and facilitate the influx and losses to and from the soil seedbank. This analysis of the annual surveys of the Southern Weed Science Society documents changes in the weed flora of the 14 contiguous southern states since the advent of transgenic, herbicide-resistant crops. In 1994 and 2009, the top five weeds in corn were morningglories, Texas millet, broadleaf signalgrass, johnsongrass, and sicklepod; in this same period Palmer amaranth, smartweeds, and goosegrass had the greatest increases in importance in corn. In cotton, morningglories and nutsedges were among the top five most troublesome weeds in 1995 and 2009. Palmer amaranth, pigweeds, and Florida pusley were also among the five most troublesome species in 2009; the weeds with the largest increases in importance in cotton were common ragweed and two species with tolerance to glyphosate, Benghal dayflower and Florida pusley. In soybean, morningglories, nutsedges, and sicklepod were among the top five weed species in 1995 and 2009. Two species with glyphosate resistance, Palmer amaranth and horseweed, were the second and fourth most troublesome weeds of soybean in 2009. In wheat, the top four weeds in 2008 were the same as those in 1994 and included Italian ryegrass, wild garlic, wild radish, and henbit. Crop production in the southern region is a mosaic of various crop rotations, soil types, and types of tillage. During the interval between the surveys, the predominant change in weed management practices in the region and the nation was the onset and rapid dominance of the use of glyphosate in herbicide-resistant cultivars of corn, cotton, and soybean. Because of the correspondence between the effects of glyphosate on the respective weed species and the observed changes in the weed flora of the crops, it is likely the very broad use of glyphosate was a key component shaping the changes in weed flora. Only eight of the top 15 most troublesome weeds of cotton and soybean, the crops with the greatest use of glyphosate, were the same in 1995 and 2009. In contrast, in corn and wheat where adoption of glyphosate-resistant cultivars lags or is absent, 12 of the 15 most troublesome weeds were the same in 1994 and 2008. These findings show on a regional scale that weeds adapt to recurrent selection from herbicides, currently the predominant weed management tool. Future research should seek methods to hinder the rapid spread of herbicide-tolerant and evolution of herbicide-resistant weed species. As new tools are developed, research should focus on ways to preserve the efficacy of those tools through improved stewardship.

Type
Review
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Brewer, C. E. and Oliver, L. R. 2009. Confirmation and resistance mechanisms in glyphosate-resistant common ragweed (Ambrosia artemisiifolia) in Arkansas. Weed Sci. 57:567573.CrossRefGoogle Scholar
Bryson, C. T. 1990. Interference and critical time of removal of hemp sesbania (Sesbania exaltata) in cotton (Gossypium hirsutum). Weed Technol. 4:833837.CrossRefGoogle Scholar
Bryson, C. T. and DeFelice, M. S., eds. 2009. Weeds of the South. Athens University of Georgia Press. 468 p.Google Scholar
Buchanan, G. A. 1974. Weed survey: southern states. South. Weed Sci. Soc. Res. Rep. 27:215249.Google Scholar
Buhler, D. D. 1996. Development of alternative weed management strategies. J. Prod. Agric. 9:501505.CrossRefGoogle Scholar
Cardina, J., Herms, C. P., and Doohan, D. J. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 50:448460.CrossRefGoogle Scholar
Cardina, J., Regnier, E., and Harrison, K. 1991. Long-term tillage effects on seed banks in three Ohio soils. Weed Sci. 39:186194.CrossRefGoogle Scholar
Causarano, H. J., Franzluebbers, A. J., Reeves, D. W., and Shaw, J. N. 2006. Soil organic carbon sequestration in cotton production systems of the southeastern United States: a review. J. Environ. Qual. 35:13741383.CrossRefGoogle ScholarPubMed
Coble, H. D. 1994. Weed science and changing times. Weed Technol. 8:420421.CrossRefGoogle Scholar
Coble, H. D. and Mortensen, D. A. 1992. The threshold concept and its application to Weed Science. Weed Technol. 6:191195.CrossRefGoogle Scholar
Coble, H. D. and Ortman, E. E. 2009. The USA national IPM road map. Pages 471478 in Radcliffe, E. B., Hutchinson, W. D., and Cancelado, R. E., eds. Integrated Pest Management: Concepts, Tactics, Strategies, and Case Studies. Cambridge, UK Cambridge University Press.Google Scholar
Culpepper, A. S., Flanders, J. T., York, A. C., and Webster, T. M. 2004. Tropical spiderwort (Commelina benghalensis) control in glyphosate-resistant cotton. Weed Technol. 18:432436.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.CrossRefGoogle Scholar
Culpepper, A. S., Kichler, J. M., and Sosnoskie, L. M. 2011. University of Georgia herbicide programs for controlling moderate to severe populations of glyphosate-resistant Palmer amaranth in 2011 cotton. University of Georgia Collge of Agricultural and Environmental Sciences, Circ. No. 924. http://mulch.cropsoil.uga.edu/weedsci/HomepageFiles/Palmerhandout-2011.pdf. Accessed: April 14, 2011.Google Scholar
Culpepper, A. S., Webster, T. M., Sosnoskie, L. M., and York, A. C. 2010. Glyphosate-resistant Palmer amaranth in the US. Pages 195212 in Nandula, V. K., ed. Glyphosate Resistance: Evolution, Mechanisms, and Management. Hoboken, NJ John Wiley & Sons.CrossRefGoogle Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol. 13:411420.CrossRefGoogle Scholar
Dill, G. M., CaJacob, C. A., and Padgette, S. R. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag. Sci. 64:326331.CrossRefGoogle ScholarPubMed
Dowler, C. C. 1994. Weed survey—southern states—grass crops subsection. Pages 279299 in Street, J. E., ed. Proceedings of the Southern Weed Science Society; 1994 Jan 17–19. Dallas, TX. Champaign, IL Southern Weed Science Society.Google Scholar
Dowler, C. C. 1995. Weed survey—southern states—broadleaf crops subsection. Pages 290305 in Street, J. E., ed. Proceedings of the Southern Weed Science Society; 1995 Jan 16–18; Memphis, TN. Champaign, IL Southern Weed Science Society.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319325.CrossRefGoogle ScholarPubMed
Egley, G. H. and Williams, R. D. 1990. Decline of weed seeds and seedling emergence over five years as affected by soil disturbances. Weed Sci. 38:504510.CrossRefGoogle Scholar
Elmore, C. D. 1983. Weed survey: analysis and summary. South. Weed Sci. Soc. Res. Rep. 36:182184.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009a. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23:156161.CrossRefGoogle Scholar
Givens, W. A., Shaw, D. R., Kruger, G. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009b. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 23:150155.CrossRefGoogle Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6:587591.CrossRefGoogle Scholar
Hartwig, N. L. and Ammon, H. U. 2002. 50th Anniversary—Invited article—Cover crops and living mulches. Weed Sci. 50:688699.CrossRefGoogle Scholar
Heap, I. M. 2011. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed: January 1, 2011.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhimp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.CrossRefGoogle Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.CrossRefGoogle Scholar
Joshi, M., Hawkins, E., Sutton, R., Lowe, J., and Frame, D. 2011. Projections of when temperature change will exceed 2°C above pre-industrial levels. Nature Clim. Change. 1:407412.CrossRefGoogle Scholar
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. E. 2004. Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Technol. 18:820825.CrossRefGoogle Scholar
Loux, M. M. and Berry, M. A. 1991. Use of a grower survey for estimating weed problems. Weed Technol. 5:460466.CrossRefGoogle Scholar
McDonald, A., Riha, S., DiTommaso, A., and DeGaetano, A. 2009. Climate change and the geography of weed damage: analysis of US maize systems suggests the potential for significant range transformations. Agric. Ecosyst. Environ. 130:131140.CrossRefGoogle Scholar
McWhorter, C. G. 1993. A 16-yr survey on levels of johnsongrass (Sorghum halepense) in Arkansas, Louisiana, and Mississippi. Weed Sci. 41:669677.CrossRefGoogle Scholar
Nichols, R. L., Bond, J., Culpepper, A. S., et al. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the Southern US. Resistant Pest Management Newsletter. 18:810.Google Scholar
Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technol. 17:195201.CrossRefGoogle Scholar
Norsworthy, J. K. 2005. Optimizing glyphosate timing in a mixed stand of glyphosate-resistant/conventional, drill-seeded soybean. Weed Technol. 19:942946.CrossRefGoogle Scholar
Owen, M. D. K. 2008. Weed species shifts in glyphosate-resistant crops. Pest Manag. Sci. 64:377387.CrossRefGoogle ScholarPubMed
Patterson, D. T. 1995. Weeds in a changing climate. Weed Sci. 43:685700.CrossRefGoogle Scholar
Potter, T. L., Truman, C. C., Bosch, D. D., and Bednarz, C. 2004. Fluometuron and pendimethalin runoff from strip and conventionally tilled cotton in the southern Atlantic Coastal Plain. J. Environ. Qual. 33:21222131.CrossRefGoogle ScholarPubMed
Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.CrossRefGoogle ScholarPubMed
Price, A. J., Balkcom, K. S., Culpepper, S. A., Kelton, J. A., Nichols, R. L., and Schomberg, H. 2011. Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J. Soil Water Conserv. 66:265275.CrossRefGoogle Scholar
Rankins, A., Byrd, J. D., Mask, D. B., Barnett, J. W., and Gerard, P. D. 2005. Survey of soybean weeds in Mississippi. Weed Technol. 19:492498.CrossRefGoogle Scholar
Reddy, K. N., Rimando, A. M., Duke, S. O., and Nandula, V. K. 2008. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate. J. Agric. Food Chem. 56:21252130.CrossRefGoogle ScholarPubMed
Rogers, J. B., Murray, D. S., Verhalen, L. M., and Claypool, P. L. 1996. Ivyleaf morningglory (Ipomoea hederacea) interference with cotton (Gossypium hirsutum). Weed Technol. 10:107114.CrossRefGoogle Scholar
Snipes, C. E., Street, J. E., and Walker, R. H. 1987. Interference periods of common cocklebur (Xanthium strumarium) with cotton (Gossypium hirsutum). Weed Sci. 35:529532.CrossRefGoogle Scholar
Sosnoskie, L. M., Herms, C. P., Cardina, J., and Webster, T. M. 2009. Seedbank and emerged weed communities following adoption of glyphosate-resistant crops in a long-term tillage and rotation study. Weed Sci. 57:261270.CrossRefGoogle Scholar
Tillman, G., Schomberg, H., Phatak, S., Mullinix, B., Lachnicht, S., Timper, P., and Olson, D. 2004. Influence of cover crops on insect pests and predators in conservation tillage cotton. J. Econ. Entomol. 97:12171232.CrossRefGoogle ScholarPubMed
Timmons, F. L. 1970. A history of weed control in the United States and Canada. Weed Sci. 18:294307.CrossRefGoogle Scholar
Triplett, G. B. Jr. and Dick, W. A. 2008. No-tillage crop production: a revolution in agriculture. Agron. J. 100:S153S165.CrossRefGoogle Scholar
U.S. Department of Agriculture, Economic Research Service. 2011. ARMS Farm Financial and Crop Production Practices. http://www.ers.usda.gov/Data/ARMS/app/default.aspx?survey=CROP. Accessed: May 9, 2011.Google Scholar
[USDA-NASS] U.S. Department of Agriculture, National Agricultural Statistics Service. 2011. Crop Acre Estimates. http://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS. Accessed: May 9, 2011.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
Vencill, W. K., Grey, T. L., Culpepper, A. S., Gaines, C., and Westra, R. 2008. Herbicide-resistance in the Amaranthaceae . J. Plant Dis. Prot. Special Iss. XXI:4144.Google Scholar
Weber, J. B., Best, J. A., and Witt, W. W. 1974. Herbicide residues and weed species shifts on modified soil field plots. Weed Sci. 22:427433.CrossRefGoogle Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Pages 291306 in Vencill, W. K., ed. Proceedings of the Southern Weed Science Society; 2005 Jan 24–26; Charlotte, NC. Champaign, IL Southern Weed Science Society.Google Scholar
Webster, T. M. 2008. Weed survey—southern states: grass crop subsection. Pages 224243 in Vencill, W. K., ed. Proceedings of the Southern Weed Science Society; 2008 Jan 29–31; Jacksonville, FL.Google Scholar
Webster, T. M. 2009. Weed survey—southern states: broadleaf crops subsection. Pages 509524 in Webster, T. M., ed. Proceedings of the Southern Weed Science Society; 2009 February 9-12; Orlando, FL.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., Flanders, J. T., Grey, T. L., and York, A. C. 2006. Tropical spiderwort (Commelina benghalensis) control and emergence patterns in preemergence herbicide systems. J. Cot. Sci. 10:6875.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974 to 1995. Weed Technol. 11:308317.CrossRefGoogle Scholar
Webster, T. M., Grey, T. L., Flanders, J. T., and Culpepper, A. S. 2009. Cotton planting date affects the critical period of Benghal dayflower (Commelina benghalensis) control. Weed Sci. 57:8186.CrossRefGoogle Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.CrossRefGoogle Scholar
Webster, T. M. and Sosnoskie, L. M. 2010. The loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton. Weed Sci. 58:7379.CrossRefGoogle Scholar
Wilkerson, G. G., Modena, S. A., and Coble, H. D. 1991. Herb: decision-model for postemergence weed-control in soybean. Agron. J. 83:413417.CrossRefGoogle Scholar
Wills, G. D. 1975. Effect of light and temperature on growth of purple nutsedge. Weed Sci. 23:9396.CrossRefGoogle Scholar
Wills, G. D. 1977. Nutsedge deals misery to cotton growers. Weeds Today. 9:1617.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.CrossRefGoogle Scholar
Yenish, J. P., Doll, J. D., and Buhler, D. D. 1992. Effects of tillage on vertical-distribution and viability of weed seed in soil. Weed Sci. 40:429433.CrossRefGoogle Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.CrossRefGoogle Scholar