Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:20:15.108Z Has data issue: false hasContentIssue false

Total Alkaloid, Crude Protein, and Fiber Concentrations in Velvet Lupine (Lupinus leucophyllus) Following Herbicide Application

Published online by Cambridge University Press:  12 June 2017

Michael H. Ralphs
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Poisonous Plant Res. Lab., 1150 E. 1400 N., Logan, UT 84321
M. Coburn Williams
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Poisonous Plant Res. Lab., 1150 E. 1400 N., Logan, UT 84321

Abstract

Total alkaloid concentration, percentage water, crude protein, and neutral detergent fiber in velvet lupine (Lupinus leucophyllus Dougl. # LUPLE) were monitored for 3 weeks following application of herbicides registered or soon to be registered for rangeland use. Picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), dicamba (3,6-dichloro-2-methoxybenzoic acid), and clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) caused some signs of epinasty but did not kill velvet lupine. Total alkaloid concentration and nutrient quality of velvet lupine leaves treated with these herbicides was not significantly different from untreated plants. Esters of 2,4-D [(2,4-dichlorophenoxy)acetic acid] and 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid] and triclopyr {[(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid} killed most velvet lupine plants and caused a subsequent decrease in total alkaloid concentration, crude protein, and water content as the plants desiccated. Herbicides that effectively killed velvet lupine decreased alkaloid levels, thus lowering the potential for increased livestock poisoning.

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1986 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anonymous. 1980. Official Methods of Analysis. 11th ed. Assoc. Off. Agric. Chem., Washington, DC. Page 14.Google Scholar
2. Ashton, F. M. and Crafts, A. S. 1981. Mode of Action of Herbicides. John Wiley & Sons, New York. Pages 274291.Google Scholar
3. Birch, E. C. and Vickery, L. S. 1961. The effect of maleic hydrazide on certain chemical constituents of flue-cured tobacco. Can. J. Plant Sci. 41:170175.CrossRefGoogle Scholar
4. Cochran, W. G. and Cox, G. M. 1975. Experimental Design. John Wiley & Sons, New York. 616 pp.Google Scholar
5. Couch, J. F. 1926. Relative toxicity of the lupine alkaloids. J. Agric. Res. 32:5167.Google Scholar
6. Cronin, E. H. and Nielsen, D. B. 1971. Controlling tall larkspur on snowdrift areas in the subalpine zone. J. Range Manage. 25: 213216.CrossRefGoogle Scholar
7. Cronin, E. H. and Nielsen, D. B. 1979. The ecology and control of rangeland larkspurs. Utah Agric. Exp. Stn. Bull. 499. 33 pp.Google Scholar
8. Cundiff, R. H. and Markunas, P. C. 1955. Determination of nicotine, nornicotine and total alkaloids in tobacco. Anal. Chem. 27:16501653.CrossRefGoogle Scholar
9. Davis, A. M. 1982. The occurrence of anagyrine in a collection of western American lupines. J. Range Manage. 35:8184.CrossRefGoogle Scholar
10. Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis. Agric. Res. Serv., U.S. Dep. Agric., Agric. Handb. No. 379. 20 pp.Google Scholar
11. Heady, H. F. 1964. Palatability of herbage and animal preference. J. Range Manage. 17:7682.CrossRefGoogle Scholar
12. Keeler, R. F., Cronin, E. H., and Shupe, J. L. 1976. Lupine alkaloids from teratogenic and nonteratogenic lupines. IV. Concentration of total alkaloids, individual major alkaloids, and the teratogen anagyrine as a function of plant part and stage of growth and their relationship to crooked calf disease. J. Toxicol. Environ. Health 1:889908.CrossRefGoogle ScholarPubMed
13. Klingman, G. C. 1961. Weed Control as a Science. John Wiley & Sons, New York. Pages 132137.Google Scholar
14. Marsh, H. 1965. Newsom's Sheep Diseases. Williams and Watkins Co., Baltimore. Pages 321400.Google Scholar
15. Marsh, C. D. and Clawson, H. B. 1916. Lupines as poisonous plants. U.S. Dep. Agric. Bull. 405. 45 pp.Google Scholar
16. Marten, G. C., Jordan, R. M., and Havin, A. W. 1976. Biological significance of reed canarygrrass alkaloids and associated palatability variation to grazing sheep and cattle. Agron. J. 68:909914.CrossRefGoogle Scholar
17. Neururer, H. M., Wichtl, M., and Creuzburg, U. 1959. Chemical control of Equisetum palustre and its influence on feeding. Pflanzenschutzberichte 22:115124.Google Scholar
18. Olsen, J. D. 1983. Relationship of relative total alkaloid concentration and toxicity of duncecap larkspur during growth. J. Range Manage. 36:550552.CrossRefGoogle Scholar
19. Ostle, B. and Mensing, R. W. 1975. Statistics in Research. Iowa State Univ. Press, Ames. Pages 322326.Google Scholar
20. Ray, A. A. 1982. SAS Users' Guide: Statistics. SAS Inst., Inc., Cary, NC.Google Scholar
21. Welsh, S. L. 1978. Utah flora: Fabaceae (Leguminosae). Great Basin Nat. 38:225307.Google Scholar
22. Williams, M. C. and Cronin, E. H. 1963. Effect of silvex and 2,4,5-T on alkaloid content of tall larkspur. Weeds 11:317319.CrossRefGoogle Scholar
23. Williams, M. C. and James, L. F. 1983. Effects of herbicides on the concentration of poisonous compounds in plants: A review. Am. J. Vet. Res. 44:24202422.Google ScholarPubMed