Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:16:14.508Z Has data issue: false hasContentIssue false

Response of acetolactate synthase from imidazolinone-susceptible and -resistant smooth pigweed to ALS inhibitors

Published online by Cambridge University Press:  20 January 2017

Cecilia Mucha Hirata
Affiliation:
DuPont Agricultural Products, Stine-Haskell Research Center, E. I. DuPont Nemours and Co., Inc., Newark, DE 19714
Henry P. Wilson
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Painter, VA 23420

Abstract

As a follow-up to greenhouse studies, acetolactate synthase (ALS) (EC 4.1.3.18) was extracted from one imidazolinone (IMI)-susceptible (S) and three IMI-resistant (R1, R2, and R3) smooth pigweed populations, and activity was assayed in the presence of imazethapyr, chlorimuron, thifensulfuron, and pyrithiobac. ALS inhibitor concentrations, required to reduce enzyme activity by a specified percentage compared with the untreated control (I p), were determined for each herbicide using regression analysis, and resistance ratios were calculated from these values. An I 50 value of >35 μM imazethapyr was calculated for all R populations compared with a value of 3.4 μM for the S population. With chlorimuron, thifensulfuron, and pyrithiobac data sets, pairwise comparisons of regression coefficients were used to determine significant differences between regression lines. Using this technique, it was established that ALS from R3 was more sensitive than ALS from S to inhibition by chlorimuron and thifensulfuron. Also, ALS from R2 and R3 displayed increased sensitivity to pyrithiobac compared with ALS extracted from the S population. We have confirmed enzyme-level resistance to imazethapyr in all R populations and have documented negative cross-resistance in some R populations to ALS inhibitors other than imazethapyr.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Plant Physiol. 270:1738117385.Google Scholar
Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.CrossRefGoogle ScholarPubMed
Chism, W. J., Birch, J. B., and Bingham, S. W. 1992. Nonlinear regressions for analyzing growth stage and quinclorac interactions. Weed Technol. 6:898903.Google Scholar
Falco, S. C. and Dumas, K. S. 1985. Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics 109:21.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Gaeddert, J. W., Peterson, D. E., and Horak, M. J. 1997. Control and cross-resistance of an acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) biotype. Weed Technol. 11:132137.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.Google Scholar
Gerwick, B. C., Subramanian, M. V., and Loney-Gallant, V. I. 1990. Mechanism of action of the 1,2,4-trizolo[1,5-a]pyrimidines. Pestic. Sci. 29:357364.CrossRefGoogle Scholar
Greaves, J. A., Rufener, G. K., Chang, M. T., and Koehler, P. H. 1993. Development of resistance to Parsuit herbicide in corn—the IT gene. Pages 104118 In Proceedings of the 48th Annual Corn and Sorghum Industry Research Conference. Washington, DC: American Seed Trade Association.Google Scholar
Gutteri, M. J., Eberlein, C. V., Mallory-Smith, C. A., and Thill, D. C. 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. Pages 1016 In Brown, T. M., ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.Google Scholar
Heap, I. 2001. International Survey of Herbicide Resistant Weeds. Web page: www.weedscience.com. Assessed: August 2001.Google Scholar
Hinz, J. R. and Owen, M.D.K. 1997. Acetolactate synthase resistance in a common waterhemp (Amaranthus rudis) population. Weed Technol. 11:1318.CrossRefGoogle Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
LaRossa, R. A. and Schloss, J. V. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent inhibitor of acetolactate synthase in Salmonella typhimurium . J. Biol. Chem. 259:8753.CrossRefGoogle ScholarPubMed
Levitt, G. 1978. US patent 4,127,405.Google Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. E. 1996. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44:789794.Google Scholar
Manley, B. S., Hatzios, K. K., and Wilson, H. P. 1999a. Absorption, translocation, and metabolism of chlorimuron and nicosulfuron in imidazolinone-resistant and -susceptible smooth pigweed (Amaranthus hybridus). Weed Technol. 13:759764.Google Scholar
Manley, B. S., Singh, B. K., Shaner, D. L., and Wilson, H. P. 1999b. Imidazolinone resistance in smooth pigweed (Amaranthus hybridus) is due to an altered acetolactate synthase. Weed Technol. 13:697705.Google Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 1996. Smooth pigweed (Amaranthus hybridus) and livid amaranth (A. lividus) response to several imidazolinone and sulfonylurea herbicides. Weed Technol. 10:835841.CrossRefGoogle Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 1998. Characterization of imidazolinone-resistant smooth pigweed (Amaranthus hybridus). Weed Technol. 12:575584.CrossRefGoogle Scholar
Poston, D. H., Wilson, H. P., and Hines, T. E. 2000. Imidazolinone resistance in several Amaranthus hybridus populations. Weed Sci. 48:508513.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase-inhibitor herbicides. Pages 83139 In Powles, S. B. and Holton, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers.Google Scholar
Santel, H. J., Bowden, B. A., Sorensen, V. M., Mueller, K. H., and Rynolds, J. 1999. Flucarbozone-sodium: a new herbicide for grass control in wheat. Weed Sci. Soc. Am. Abstr. 39:7.Google Scholar
Schmenk, R. E., Barrett, M., and Witt, W. E. 1997. An investigation of smooth pigweed (Amaranthus hybridus) resistance to acetolactate synthase inhibiting herbicides. Weed Sci. Soc. Am. Abstr. 37:296.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
Simpson, D. M. 1998. Understanding and preventing development of ALS-resistant weed populations. Down Earth 53:2635.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.Google Scholar
Stidham, M. A. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39:428434.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in ALS gene. Plant Physiol. 111:1353.Google Scholar