Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T02:45:51.172Z Has data issue: false hasContentIssue false

Physicochemical Aspects of Phloem Translocation of Herbicides

Published online by Cambridge University Press:  12 June 2017

Richard H. Bromilow
Affiliation:
AFRC Inst. of Arable Crops Res., Rothamsted Exp. Stn., Harpenden, Herts., AL5 2JQ, U.K.
Keith Chamberlain
Affiliation:
AFRC Inst. of Arable Crops Res., Rothamsted Exp. Stn., Harpenden, Herts., AL5 2JQ, U.K.
Avis A. Evans
Affiliation:
AFRC Inst. of Arable Crops Res., Rothamsted Exp. Stn., Harpenden, Herts., AL5 2JQ, U.K.

Abstract

A physicochemical approach to understanding phloem transport of xenobiotics requires that similarities in transport processes in different plant species far outweigh any differences. There is now evidence that this is so, though additional factors such as rate of cuticular penetration, metabolism, and phytotoxicity may differ among plant species and thus may influence distribution patterns. Most herbicides that are translocated in phloem are weak acids, and their transport behavior can now be explained, at least in part, in terms of accumulation and retention in phloem. These processes can, in turn, be explained reasonably well by considering the polarity and acid strength of each compound. Specific carrier processes do not appear to be involved in the transport of most phloem-mobile herbicides. Phloem transport of herbicides has been assessed using the castor bean plant. For acids of pKa <4, intermediate lipophilicity is required for good phloem transport, while weaker acids of pKa >5 and nonionized compounds need to be more polar in order to move well.

Type
Special Topics
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Albert, A. and Serjeant, E. P. 1962. Ionization Constants of Acids and Bases. A Laboratory Manual. Methuen and Co., Ltd., London. 179 pp.Google Scholar
2. Barak, E., Dinoor, A., and Jacoby, B. 1983. Adsorption of systemic fungicides and a herbicide by some components of plant tissues in relation to some physicochemical properties of the pesticides. Pestic. Sci. 14:213219.CrossRefGoogle Scholar
3. Briggs, G. G. 1981. Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J. Agric. Food Chem. 29:10501059.CrossRefGoogle Scholar
4. Briggs, G. G., Bromilow, R. H., and Evans, A. A. 1982. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 13:495504.CrossRefGoogle Scholar
5. Briggs, G. G., Bromilow, R. H., Evans, A. A., and Williams, M. R. 1983. Relationships between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots. Pestic. Sci. 14:492500.CrossRefGoogle Scholar
6. Briggs, G. G., Rigitano, R.L.O., and Bromilow, R. H. 1987. Physicochemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic. Sci. 19:107112.CrossRefGoogle Scholar
7. Bromilow, R. H. and Chamberlain, K. 1989. Designing molecules for systemicity. Pages 113128 in Atkin, R. K. and Clifford, D. R., eds. Mechanisms and Regulation of Transport Processes, Monograph 18. Br. Plant Growth Regulator Group, Bristol.Google Scholar
8. Bromilow, R. H., Chamberlain, K., and Briggs, G. G. 1986. Techniques for studying the uptake and translocation of pesticides in plants. Aspects Appl. Biol. 11:2944.Google Scholar
9. Bromilow, R. H., Rigitano, R.L.O., Briggs, G. G., and Chamberlain, K. 1987. Phloem translocation of non-ionised chemicals in Ricinus communis . Pestic. Sci. 19:8599.CrossRefGoogle Scholar
10. Burton, J. D. and Balke, N. E. 1986. Evidence for carrier-mediated transport of glyphosate into suspension cultured potato cells. Abstr. 6th Int. Congr. Pestic. Chem. (IUPAC). 3D-07.Google Scholar
11. Chamberlain, K., Briggs, G. G., Bromilow, R. H., Evans, A. A., and Chen, Q. F. 1987. The influence of physico-chemical properties of pesticides on uptake and translocation following foliar application. Aspects Appl. Biol. 14:293304.Google Scholar
12. Chamberlain, K., Burrell, M. M., Butcher, D. N., and White, J. C. 1984. Phloem transport of xenobiotics in Ricinus communis var. Gibsonii. Pestic. Sci. 15:18.CrossRefGoogle Scholar
13. Cohen, J. D., Baldi, B. G., and Bialek, K. 1985. Strongly acidic auxin indole-3-methanesulfonic acid. Plant Physiol. 77:195199.CrossRefGoogle ScholarPubMed
14. Collander, R. 1954. The permeability of Nitella cells to non-electrolytes. Physiol. Plant. 7:420445.CrossRefGoogle Scholar
15. Crafts, A. S. and Crisp, C. E. 1971. Phloem Transport in Plants. W. H. Freeman and Co., San Francisco. 481 pp.Google Scholar
16. Crisp, C. E. 1972. The molecular design of systemic insecticides and organic functional groups in translocation. Pages 211264 in Tahori, A. S., ed. Pesticide Chemistry: Proceedings 2nd IUPAC Congress. Vol. I. Gordon and Breach, New York.Google Scholar
17. Giaquinta, R. T. 1985. Physiological basis of phloem transport of agrichemicals. Pages 718 in Hedin, P. A., ed. Bioregulators for Pest Control. Am. Chem. Soc., Washington, DC.CrossRefGoogle Scholar
18. Geiger, D. R. and Bestman, H. D. 1990. Self-limitation of herbicide mobility by phytotoxic action. Weed Sci. 38:324329.CrossRefGoogle Scholar
19. Grimm, E., Neumann, S., and Jacob, F. 1985. Transport of xenobiotics in higher plants. II. Absorption of defenuron, carboxyphenylmethylurea and maleic hydrazide by isolated conducting tissue of Cyclamen . Biochem. Physiol. Pflanz. 180:383392.CrossRefGoogle Scholar
20. Grimm, E., Neumann, S., and Jacob, F. 1986. Transport of xenobiotics in higher plants III. Absorption of 2,4-D and 2,4-dichloroanisole by isolated conducting tissue of Cyclamen . Biochem. Physiol. Pflanz. 181:6979.CrossRefGoogle Scholar
21. Grimm, E., Neumann, S., and Krug, B. 1987. Transport of xenobiotics in higher plants. IV. Ambimobility of the acidic compounds bromoxynil and pentachlorophenol. Biochem. Physiol. Pflanz. 182:323332.CrossRefGoogle Scholar
22. Groussol, J., Delrot, S., Caruhel, P., and Bonnemain, J. -L. 1986. Design of an improved exudation method for phloem sap collection and its use for the study of phloem mobility of pesticides. Physiol. Veg. 24:123133.Google Scholar
23. Hall, S. M., Baker, D. A., and Milburn, J. A. 1971. Phloem transport of 14C-labeled assimilates in Ricinus . Planta 100:200207.CrossRefGoogle Scholar
24. Hansch, C. V. and Leo, A. 1979. Substitution Constants for Correlation Analysis in Chemistry and Biology. John Wiley and Sons, New York, Chichester, Brisbane, Toronto. 339 pp.Google Scholar
25. Hendley, P., Dicks, J. W., Monaco, T. J., Slyfield, S. M., Tummon, J., and Barrett, J. C. 1985. Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci. 33:1124.CrossRefGoogle Scholar
26. Hoad, G. V. 1980. A simple system for determining the phloem mobility of compounds using excised pods of lupin (Lupinus albus L.). Planta 150:275278.CrossRefGoogle ScholarPubMed
27. Hsu, F. C., Kleier, D. A., and Melander, W. R. 1988. Phloem mobility of xenobiotics. II. Testing of the unified mathematical model. Plant Physiol. 86:811816.CrossRefGoogle ScholarPubMed
28. Kirkwood, R. C. 1979. The uptake and translocation of foliar-applied herbicides using an explant system. Pages 410415 in Geissbühler, H., ed. Advances in Pesticide Science (Proc. IUPAC Congr. 1978). Pergamon Press, Oxford.Google Scholar
29. Kleier, D. A. 1988. Phloem mobility of xenobiotics. I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiol. 86:803810.CrossRefGoogle ScholarPubMed
30. Lichtner, F. T. 1984. Translocation of xenobiotics. Plant Physiol. (Suppl.) 75:76.Google Scholar
31. Lichtner, F. T. 1986. Phloem transport of agricultural chemicals. Pages 601608 in Cronshaw, J., Lucas, W. J., and Giaquinta, R. T., eds. Phloem Transport, Plant Biology, Vol. 1. Alan R. Liss, Inc., New York.Google Scholar
32. Massini, P. 1963. Aminotriazolylalanine: a metabolic product of aminotriazole from plants. Acta Bot Neerl. 12:6472.CrossRefGoogle Scholar
33. Milburn, J. A. 1972. Phloem transport in Ricinus . Pestic. Sci. 3:653665.CrossRefGoogle Scholar
34. Münch, E. 1930. Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena. 234 pp.Google Scholar
35. Neumann, S., Grimm, E., and Jacob, F. 1985. Transport of xenobiotics in higher plants. I. Structural prerequisites for translocation in the phloem. Biochem. Physiol. Pflanz. 180:257268.CrossRefGoogle Scholar
36. Pate, J. S., Peoples, M. B., and Atkins, C. A. 1984. Spontaneous phloem bleeding from cryopunctured fruits of a ureide-producing legume. Plant Physiol. 74:499505.CrossRefGoogle ScholarPubMed
37. Perrin, D. D., Dempsey, B., and Serjeant, E. P. 1981. pKa Prediction for Organic Acids and Bases. Chapman and Hall, London, New York. 146 pp.CrossRefGoogle Scholar
38. Peterson, C. A. and Edgington, L. V. 1976. Entry of pesticides into the plant symplast as measured by their loss from ambient solution. Pestic. Sci. 7:483491.CrossRefGoogle Scholar
39. Peterson, C. A., de Wildt, P.P.Q., and Edgington, L. V. 1978. A rationale for the ambimobile translocation of the nematicide oxamyl in plants. Pestic. Biochem. Physiol. 8:19.CrossRefGoogle Scholar
40. Price, C. 1979. Movement of xenobiotics in plants–perspectives. Pages 401409 in Geissbühler, H., ed. Advances in Pesticide Science (Proc. IUPAC Congr. 1978). Pergamon Press, Oxford.Google Scholar
41. Price, C. E. and Anderson, N. H. 1985. Uptake of chemicals from foliar deposits: effects of plant species and molecular structure. Pestic. Sci. 16:369377.CrossRefGoogle Scholar
42. Price, C. E., Boatman, S. G., and Boddy, B. J. 1975. The uptake and translocation of 1-methylpyridinium chloride and related model compounds in wheat. J. Exp. Bot 26:521532.CrossRefGoogle Scholar
43. Rigitano, R.L.O. 1985. Physico-chemical factors affecting translocation and distribution of xenobiotics in plants. PhD. Thesis, Univ. London. 141 pp.Google Scholar
44. Rigitano, R.L.O., Bromilow, R. H., Briggs, G. G., and Chamberlain, K. 1987. Phloem translocation of weak acids in Ricinus communis . Pestic. Sci. 19:113133.CrossRefGoogle Scholar
45. Sanders, G. E. and Pallett, K. E. 1987. Studies into the differential activity of the hydroxybenzonitrile herbicides. II. Uptake, movement and metabolism in two contrasting species. Pestic. Biochem. Physiol. 28:163171.CrossRefGoogle Scholar
46. Stevens, P.J.G., Baker, E. A., and Anderson, N. H. 1988. Factors affecting the foliar absorption and translocation of pesticides. 2. Physicochemical properties of the active ingredient and the role of surfactant Pestic. Sci. 24:3153.CrossRefGoogle Scholar
47. Tyree, M. T., Peterson, C. A., and Edgington, L. V. 1979. A simple theory regarding ambimobility of xenobiotics with special reference to the nematicide oxamyl. Plant Physiol. 63:367374.CrossRefGoogle Scholar
48. Uchida, M. 1980. Affinity and mobility of fungicidal dialkyl dithiolanylidenemalonates in rice plants. Pestic. Biochem. Physiol. 14:249255.CrossRefGoogle Scholar
49. Vanden Born, W. H., Bestman, H. D., and Devine, M. D. 1988. The inhibition of assimilate translocation by chlorsulfuron as a component of its mechanism of action. Pages 6974 in Factors Affecting Herbicidal Activity and Selectivity. Proc. EWRS Symp. Google Scholar
50. Zimmermann, M. H. and Milburn, J. A., eds. 1975. Transport in Plants I. Phloem Transport. Springer-Verlag, Berlin, Heidelberg, New York. 535 pp.Google Scholar