Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T13:55:20.148Z Has data issue: false hasContentIssue false

Lipid Biosynthesis Inhibitors

Published online by Cambridge University Press:  12 June 2017

John W. Gronwald*
Affiliation:
Plant Sci. Res. Unit, Agric. Res. Serv., U.S. Dep. and Agric. Dep. Agron. and Plant Genet., Univ. Minnesota, St. Paul, MN 55108

Abstract

Five classes of herbicides (carbamothioates, chloroacetamides, substituted pyridazinones, cyclohexanediones, and aryloxyphenoxypropionic acids) have been reported to inhibit lipid biosynthesis in higher plants. Carbamothioates impair the synthesis of surface lipids (waxes, cutin, suberin). These effects have been attributed to the ability of this herbicide class to inhibit one or more acyl-CoA elongases. Though as yet poorly characterized, these enzymes are associated with the endoplasmic reticulum and catalyze the condensation of malonyl-CoA with fatty acid acyl-CoA substrates to form very long-chain fatty acids used in the synthesis of surface lipids. There is contradictory evidence regarding the effects of chloroacetamide herbicides on de novo fatty acid biosynthesis. Selected substituted pyridazinones decrease the degree of unsaturation of plastidic galactolipids. This effect is attributed to the ability of selected members of this herbicide class to inhibit fatty acid desaturases which are thought to be located in the chloroplast envelope. Aryloxyphenoxypropionic acid and cyclohexanedione herbicides inhibit de novo fatty acid biosynthesis in grasses. The target site for these herbicide classes is the enzyme acetyl-CoA carboxylase which is found in the stroma of plastids. In most cases, selectivity between grasses and dicots is expressed at this site. Aryloxyphenoxypropionic acids and cyclohexanediones are reversible, linear, noncompetitive inhibitors of acetyl-CoA carboxylase from grasses. Both classes are also mutually exclusive inhibitors of grass acetyl-CoA carboxylase which suggests that they bind at a common domain on the enzyme.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Agrawal, V. P. and Stumpf, P. K. 1985. Characterization and solubilization of an acyl chain elongation system in microsomes of leek epidermal cells. Arch. Biochem. Biophys. 240:154165.CrossRefGoogle ScholarPubMed
2. Asare-Boamah, N. K. and Fletcher, R. A. 1983. Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings. Weed Sci. 31:4955.Google Scholar
3. Ashton, F. M. and Crafts, A. S. 1981. Thiocarbamates. Pages 303327 in Mode of Action of Herbicides. John Wiley and Sons, New York.Google Scholar
4. Bessoule, J-J, Lessire, R., and Cassagne, C. 1989. Partial purification of the acyl-CoA elongase of Allium porrum leaves. Arch. Biochem. Biophys. 268:475484.CrossRefGoogle ScholarPubMed
5. Betts, K. J., Wyse, D. L., Gronwald, J. W., and Ehlke, N. J. 1990. Inheritance of diclofop resistance in Italian ryegrass. Abstr. Weed Sci. Soc. Am. 30:58.Google Scholar
6. Bolton, P. and Harwood, J. L. 1976. Fatty acid synthesis in aged potato slices. Phytochemistry 15:15011506.CrossRefGoogle Scholar
7. Bolton, P. and Harwood, J. L. 1976. Effect of thiocarbamate herbicides on fatty acid synthesis by potato. Phytochemistry 15:15071509.CrossRefGoogle Scholar
8. Brezeanu, A. G., Davies, D. G., and Shimabukuro, R. H. 1976. Ultrastructural effects and translocation of methyl-2-(4-(2,4-dichlorophenoxy)phenoxy propanoate in wheat (Triticum aestivum) and wild oat (Avena fatua). Can. J. Bot. 54:20382048.CrossRefGoogle Scholar
9. Brock, K. and Kannangara, C. G. 1976. Properties and morphology of barley embryo acetyl CoA carboxylase. Carlsberg Res. Commun. 41:121129.CrossRefGoogle Scholar
10. Brockman, J. A., Norman, H. A., and Hildebrand, D. F. 1990. Effects of temperature, light and a chemical modulator on linolenate biosynthesis in mutant and wild type Arabidopsis calli. Phytochemistry 29:14471453.Google Scholar
11. Browse, J., McCourt, P., and Somerville, C. 1986. A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant Physiol. 81:859864.CrossRefGoogle Scholar
12. Buhler, D. D., Swisher, B. A., and Burnside, O. C. 1985. Behavior of 14C-haloxyfop-methyl in intact plants and cell cultures. Weed Sci. 33:291299.Google Scholar
13. Burgstahler, R. J. and Lichtenthaler, H. K. 1984. Inhibition by sethoxydim of phospho- and galactolipid accumulation in maize seedlings. Pages 619622 in Siegenthaler, P. A. and Eichenberger, W., eds. Structure, Function and Metabolism of Plant Lipids. Elsevier, Amsterdam.Google Scholar
14. Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gengenbach, B. G., and Wyse, D. L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Commun. 148:10391044.Google Scholar
15. Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Physiol. 34:7685.Google Scholar
16. Burton, J. D., Gronwald, J. W., Keith, R. A., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1991. Kinetics of inhibition of acetyl-coenzyme A carboxylase by sethoxydim and haloxyfop. Pestic. Biochem. Physiol. 39:100109.Google Scholar
17. Butler, J.H.B. and Appleby, A. P. 1986. Tolerance of red fescue (Festuca rubra) and bentgrass (Agrostis spp.) to sethoxydim. Weed Sci. 34:457461.CrossRefGoogle Scholar
18. Caldwell, J. 1984. Xenobiotic acyl-coenzymes A: Critical intermediates in the biochemical pharmacology and toxicology of carboxylic acids. Biochem. Soc. Trans. 12:911.CrossRefGoogle ScholarPubMed
19. Carringer, R. D., Rieck, C. E., and Bush, L. P. 1978. Metabolism of EPTC in corn (Zea mays). Weed Sci. 26:157160.CrossRefGoogle Scholar
20. Chang, S-S, Ashton, F. M., and Bayer, D. E. 1985. Butachlor influence on selected metabolic processes of plant cells and tissues. J. Plant Growth Regul. 4:19.Google Scholar
21. Charles, D. J. and Cherry, J. H. 1986. Purification and characterization of acetyl-CoA carboxylase from developing soybean seeds. Phytochemistry 25:10671071.Google Scholar
22. Charles, D. J., Hasegawa, P. M., and Cherry, J. H. 1986. Characterization of acetyl-CoA carboxylase in the seed of two soybean genotypes. Phytochemistry 25:5559.Google Scholar
23. Cho, H-Y, Widholm, J. M., and Slife, F. W. 1986. Effects of haloxyfop on corn (Zea mays) and soybean (Glycine max) cell suspension cultures. Weed Sci. 34:496501.CrossRefGoogle Scholar
24. Cobb, A. H. and Barnwell, P. 1989. Anti-auxin activity of graminicides. Brighton Crop. Prot. Conf.—Weeds. 1:183190.Google Scholar
25. Davies, A. O. and Harwood, J. L. 1983. Effect of substituted pyridazinones on chloroplast structure and lipid metabolism in greening barley leaves. J. Exp. Bot. 34:10891100.CrossRefGoogle Scholar
26. Deal, L. M., Reeves, J. T., Larkins, B. A., and Hess, F. D. 1980. Use of an in vitro protein synthesizing system to test the mode of action of chloroacetamides. Weed Sci. 28:334340.Google Scholar
27. Dicks, J. W., Slater, J. W., and Bewick, D. W. 1985. PP 005—The Renantiomer of fluazifop-butyl. Proc. Br. Crop Prot. Conf.—Weeds. 1:271280.Google Scholar
28. Donald, W. W. and Shimabukuro, R. H. 1980. Selectivity of diclofop-methyl between wheat and wild oat: Growth and herbicide metabolism. Physiol. Plant. 49:459464.CrossRefGoogle Scholar
29. Duke, S. O. 1985. Effects of herbicides on nonphotosynthetic biosynthetic processes. Pages 99112 in Duke, S. O., ed. Weed Physiology. Vol. II. Herbicide Physiology. CRC Press, Boca Raton, FL.Google Scholar
30. Duke, S. O. and Kenyon, W. H. 1988. Polycyclic alkanoic acids. Pages 71116 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Vol. 3. Marcel-Dekker, New York.Google Scholar
31. Duke, W. B., Slife, F. W., Hanson, J. B., and Butler, H. S. 1975. An investigation of the mechanism of action of propachlor. Weed Sci. 23:142147.CrossRefGoogle Scholar
32. Eastwell, K. C. and Stumpf, P. K. 1983. Regulation of plant acetyl-CoA carboxylase by adenylate nucleotides. Plant Physiol. 72:5055.Google Scholar
33. Ebert, E. 1982. The role of waxes in the uptake of metolachlor into sorghum in relation to the protectant CGA 43089. Weed Res. 22:305311.Google Scholar
34. Ebert, E. and Ramsteiner, K. 1984. Influence of metolachlor and the metolachlor protectant CGA 43089 on the biosynthesis of epicuticular waxes on the primary leaves of Sorghum bicolor Moench. Weed Res. 24:383389.Google Scholar
35. Eder, F. A. 1979. Pyridazinones, their influence on the biosynthesis of carotenoids and the metabolism of lipids in plants (survey of literature). Z. Naturforsch. 34c:10521054.Google Scholar
36. Egin-Buhler, B. and Ebel, J. 1983. Improved purification and further characterization of acetyl-CoA carboxylase from cultured cells of parsley (Petroselinum hortense). Eur. J. Biochem. 133:335339.CrossRefGoogle ScholarPubMed
37. Egin-Buhler, B., Loyal, R., and Ebel, J. 1980. Comparison of acetyl-CoA carboxylases from parsley cell cultures and wheat germ. Arch. Biochem. Biophys. 203:90100.Google Scholar
38. Ezra, G., Gressel, J., and Flowers, H. M. 1983. Effects of the herbicide EPTC and the protectant DDCA on incorporation and distribution of [2-14C]acetate into major lipid fractions of maize cell suspension cultures. Pestic. Biochem. Physiol. 19:225234.CrossRefGoogle Scholar
39. Fedtke, C. 1982. Biochemistry and Physiology of Herbicide Action. Pages 142147. Springer-Verlag, New York.Google Scholar
40. Finlayson, S. A. and Dennis, D. T. 1983. Acetyl-coenzyme A carboxylase from the developing endosperm of Ricinus communis. I. Isolation and characterization. Arch. Biochem. Biophys. 225:576585.CrossRefGoogle ScholarPubMed
41. Finlayson, S. A. and Dennis, D. T. 1983. Acetyl-coenzyme A carboxylase from the developing endosperm of Ricinus communis. II. A two-site kinetic mechanism. Arch. Biochem. Biophys. 225:586595.Google Scholar
42. Focke, M. and Lichtenthaler, H. K. 1987. Inhibition of the acetyl-CoA carboxylase of barley chloroplasts by cycloxydim and sethoxydim. Z. Naturforsch. 42c:13611363.Google Scholar
43. Fuerst, E. P. 1987. Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. Weed Technol. 1:270277.CrossRefGoogle Scholar
44. Gentner, W. A. 1966. The influence of EPTC on external foliage wax deposition. Weeds. 14:2731.Google Scholar
45. Gerwick, B. C., Jackson, L. A., Handly, J., Gray, N. R., and Russell, J. W. 1988. Preemergence and postemergence activities of the (R) and (S) enantiomers of haloxyfop. Weed Sci. 36:453456.Google Scholar
46. Gronwald, J. W. 1986. Effect of haloxyfop and haloxyfop-methyl on elongation and respiration of corn (Zea mays) and soybean (Glycine max) roots. Weed Sci. 34:196202.Google Scholar
47. Gronwald, J. W., Parker, W. B., Somers, D. A., Wyse, D. L., and Gengenbach, B. G. 1989. Selection for tolerance to graminicide herbicides in maize tissue culture. Proc. Brighton Crop Prot. Conf.—Weeds. 3:12171224.Google Scholar
48. Gronwald, J. W., Eberlein, C. V., Betts, K. J., Rosow, K. M., Ehlke, N. J., and Wyse, D. L. 1989. Diclofop resistance in a biotype of Italian ryegrass. Plant Physiol. 89:S-115.Google Scholar
49. Hamm, P. C. 1972. Some unique biological activity-structure relationships of the acylated anilides of the alachlor type. Pages 4164 in Tahori, A. S., ed. Herbicides, Fungicides, Formulation Chemistry, Proc. 2nd Int. Congr. Pestic. Chem. (IUPAC). Vol. V. Gordon and Breach, New York.Google Scholar
50. Harwood, J. L. 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:101138.CrossRefGoogle Scholar
51. Harwood, J. 1989. Lipid metabolism in plants. Pages 143 in Conger, B. V., ed. Crit. Rev. Plant Sci. Vol. 8. CRC Press, Inc., Boca Raton, FL.Google Scholar
52. Harwood, J. L. 1989. The properties and importance of acetyl-coenzyme A carboxylase in plants. Proc. Brighton Crop Prot. Conf.—Weeds. 1:155162.Google Scholar
53. Harwood, J. L. and Stumpf, P. K. 1971. Fat metabolism in higher plants: Control of fatty acid synthesis in germinating seeds. Arch. Biochem. Biophys. 142:281291.Google Scholar
54. Harwood, J. L., Ridley, S. M., and Walker, K. A. 1989. Herbicides inhibiting lipid synthesis. Pages 7396 in Dodge, A. D., ed. Herbicides and Plant Metabolism. Cambridge University Press, New York.Google Scholar
55. Hawke, J. C. and Leech, R. M. 1987. Acetyl-CoA—carboxylase activity in normally developing wheat leaves. Planta 171:489495.Google Scholar
56. Hellyer, A., Bambridge, H. E., and Slabas, A. R. 1986. Plant acetyl-CoA carboxylase. Biochem. Soc. Trans. 14:565568.Google Scholar
57. Hendley, P., Dicks, J. W., Monaco, T. J., Slyfield, S. M., Tummon, O. J., and Barrett, J. C. 1985. Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci. 33:1124.Google Scholar
58. Hoppe, H. H. 1981. Effect of diclofop-methyl on protein, nucleic acid, and lipid biosynthesis in tips of radicles from Zea mays L. Z. Pflanzenphysiol. 102:189197.Google Scholar
59. Hoppe, H. H. 1985. Differential effect of diclofop-methyl on fatty acid biosynthesis in leaves of sensitive and tolerant plant species. Pestic. Biochem. Physiol. 23:297308.CrossRefGoogle Scholar
60. Hoppe, H. H. 1989. Fatty acid biosynthesis — a target site of herbicide action. Pages 6583 in Böger, P. and Sandmann, G., eds. Target Sites of Herbicide Action. CRC Press, Inc., Boca Raton, FL.Google Scholar
61. Hoppe, H. H. and Zacher, H. 1982. Inhibition of fatty acid biosynthesis in tips of radicles from Zea mays by diclofop-methyl. Z. Pflanzenphysiol. 106:287298.Google Scholar
62. Hoppe, H. H. and Zacher, H. 1985. Inhibition of fatty acid biosynthesis in isolated bean and maize chloroplasts by herbicidal phenoxyphenoxypropionic acid derivatives and structurally related compounds. Pestic. Biochem. Physiol. 24:298305.CrossRefGoogle Scholar
63. Hosaka, H. and Takagi, M. 1987. Biochemical effects of sethoxydim in excised root tips of corn (Zea mays). Weed Sci. 35:612618.Google Scholar
64. Hosaka, H., Inaba, H., and Ishikawa, H. 1984. Response of monocotyledons to BAS 9052 OH. Weed Sci. 32:2832.Google Scholar
65. Hosaka, H., Inaba, H., Satoh, A., and Ishikawa, H. 1984. Morphological and histological effects of sethoxydim on corn (Zea mays) seedlings. Weed Sci. 32:711721.Google Scholar
66. Ikai, T., Suzuki, K., Hattori, K., Igarashi, H., and Uchiyama, N. 1985. The site of action of quizalofop-ethyl, NCI-96683. Br. Crop Prot. Conf.—Weeds. 1:163169.Google Scholar
67. Ishihara, K., Hosaka, H., Kubota, M., Kamimura, H., Takakusa, N., and Yasuda, Y. 1987. Effects of sethoxydim on the metabolism of excised root tips of corn. Pages 187190 in Greenhalgh, R. and Roberts, T. R., eds. Pesticide Chemistry and Technology. Blackwell Scientific, Palo Alto, CA.Google Scholar
68. Jaworski, E. G. 1956. Biochemical action of CDAA, a new herbicide. Science 123:847848.Google Scholar
69. Jaworski, E. G. 1969. Analysis of the mode of action of herbicidal α-chloroacetamides J. Agric. Food Chem. 17:165170.Google Scholar
70. Joyard, J. and Douce, R. 1987. Galactolipid synthesis. Pages 215274 in Stumpf, P. K. and Conn, E. E., eds. Biochemistry of Plants. Vol. 9. Lipids: Structure and Function. Academic Press, New York.Google Scholar
71. Khan, M-U, Lem, N. W., Chandorkar, K. R., and Williams, J. P. 1979. Effects of substituted pyridazinones (San 6706, San 9774, San 9785) on glycerolipids and their associated fatty acids in the leaves of Vicia faba and Hordeum vulgare . Plant Physiol. 64:300305.CrossRefGoogle ScholarPubMed
72. Kobek, K., Focke, M., and Lichtenthaler, H. K. 1988. Fatty-acid biosynthesis and acetyl-CoA carboxylase as a target of diclofop, fenoxaprop and other aryloxy-phenoxy-propionic acid herbicides. Z. Naturforsch. 43c:4754.Google Scholar
73. Kobek, K., Focke, M., Lichtenthaler, H. K., Retzlaff, G., and Wurzer, B. 1988. Inhibition of fatty acid biosynthesis in isolated chloroplasts by cycloxydim and other cyclohexane-1,3-diones. Physiol. Plant. 72:492498.Google Scholar
74. Kolattukudy, P.E. 1980. Cutin, suberin, and waxes. Pages 571645 in Stumpf, P. K., ed. The Biochemistry of Plants. Vol. 4. Lipids: Structure and Function. Academic Press, New York.Google Scholar
75. Kolattukudy, P. E. and Brown, L. 1974. Inhibition of cuticular lipid biosynthesis in Pisum sativum by thiocarbamates. Plant Physiol. 53:903906.Google Scholar
76. Laing, W. A. and Roughan, P. G. 1982. Activation of spinach chloroplast acetyl-coenzyme A carboxylase by coenzyme A. FEBS Lett. 144:341344.Google Scholar
77. Lamoureux, G. L. and Frear, D. S. 1979. Pesticide metabolism in higher plants: In vitro enzyme studies. Pages 77128 in Paulson, G. D., Frear, D. S., and Marks, E. P., eds. Xenobiotic Metabolism, In Vitro Methods. Am. Chem. Soc. Symp. Ser. 97. Am. Chem. Soc., Washington, DC.Google Scholar
78. Lay, M-M and Casida, J. E. 1976. Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxification by elevating corn root glutathione content and glutathione S-transferase activity. Pestic. Biochem. Physiol. 6:442456.Google Scholar
79. Leavitt, J.R.C. and Penner, D. 1979. In vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-25788. J. Agric. Food Chem. 27:533536.Google Scholar
80. LeBaron, H. M., McFarland, J. E., and Simoneaux, B. J. 1988. Metolachlor. Pages 335381 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation and Mode of Action. Marcel-Dekker, New York.Google Scholar
81. Leech, R. M., Walton, C. A., and Baker, N. R. 1985. Some effects of 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone (San 9785) on the development of chloroplast thylakoid membranes in Hordeum vulgare L. Planta 165:277283.Google Scholar
82. Lem, N. W. and Williams, J. P. 1981. Desaturation of fatty acids associated with monogalactosyl diacylglycerol: The effects of San 6706 and San 9785. Plant Physiol. 68:944949.Google Scholar
83. Lessire, R., Bessoule, J-J., and Cassagne, C. 1985. Solubilization of C18—CoA and C20-CoA elongases from Allium porrum L. epidermal cell microsomes. FEBS Lett. 187:314320.Google Scholar
84. Lessire, R., Bessoule, J-J., and Cassagne, C. 1989. Involvement of a β-ketoacyl-CoA intermediate in acyl-CoA elongation by an acyl-CoA elongase purified from leek epidermal cells. Biochim. Biophys. Acta 1006:3540.Google Scholar
85. Lichtenthaler, H. K. 1984. Chloroplast biogenesis, its inhibition and modification by new herbicide compounds. Z. Naturforsch. 39c:492499.Google Scholar
86. Lichtenthaler, H. K. and Meier, D. 1984. Inhibition by sethoxydim of chloroplast biogenesis, development and replication in barley seedlings. Z. Naturforsch. 39c:115122.Google Scholar
87. Lichtenthaler, H. K., Kobek, K., and Ishii, K. 1987. Inhibition by sethoxydim of pigment accumulation and fatty acid biosynthesis in chloroplasts of Avena seedlings. Z. Naturforsch. 42c:12751279.Google Scholar
88. Lichtenthaler, H. K., Kobek, K., and Focke, M. 1989. Differences in sensitivity and tolerance of monocotyledonous and dicotyledonous plants towards inhibitors of acetyl-coenzyme A carboxylase. Proc. Brighton Crop Prot. Conf.—Weeds. 1:173182.Google Scholar
89. Mackall, J. C. and Lane, M. D. 1977. Changes in mammary-gland acetyl-coenzyme A carboxylase associated with lactogenic differentiation. Biochem. J. 162:635642.Google Scholar
90. Mann, J. D. and Pu, M. 1968. Inhibition of lipid synthesis by certain herbicides. Weed Sci. 16:197198.Google Scholar
91. Marshall, L. C. 1990. Characterization of maize genotypes tolerant to herbicides that inhibit acetyl-CoA carboxylase. PhD. Thesis. Univ. Minnesota. 91 pp.Google Scholar
92. Mayer, M. P., Bartlett, D. L., Beyer, P., and Kleinig, H. 1989. The in vitro mode of action of bleaching herbicides on the desaturation of 15-cis-phytoene and cis-δ-carotene in isolated daffodil chromoplasts. Pestic. Biochem. Physiol. 34:111117.Google Scholar
93. McFarland, J. E. 1986. Alkylation: A possible mode of action of the chloroacetanilide herbicides. Ph.D. Thesis. Purdue Univ. 96 pp.Google Scholar
94. Mellis, J. M., Pillai, P., Davis, D. E., and Truelove, B. 1982. Metolachlor and alachlor effects on membrane permeability and lipid synthesis. Weed Sci. 30:399404.Google Scholar
95. Mishina, M., Kamiryo, T., Tanaka, A., Fukui, S., and Numa, S. 1976. Acetyl-coenzyme-A carboxylase of Candida lipolytica. 1. Purification and properties of the enzyme. Eur. J. Biochem. 71:295300.Google Scholar
96. Mohan, S. B. and Kekwick, R.G.O. 1980. Acetyl-coenzyme A carboxylase from Avocado (Persea americana) plastids and spinach (Spinacia oleracea) chloroplasts. Biochem. J. 187:667676.Google Scholar
97. Molin, W. T., Anderson, E. J., and Porter, C. A. 1986. Effects of alachlor on anthocyanin and lignin synthesis in etiolated sorghum [Sorghum bicolor (L.) Moench.] mesocotyls. Pestic. Biochem. Physiol. 25:105111.Google Scholar
98. Murphy, D. J., Harwood, J. L., Lee, K. A., Roberto, F., Stumpf, P. K., and St. John, J. B. 1985. Differential responses of a range of photosynthetic tissues to a substituted pyridazinone, SANDOZ 9785. Specific effects on fatty acid desaturation. Phytochemistry 24:19231929.Google Scholar
99. Nikolau, B. J. and Hawke, J. C. 1984. Purification and characterization of maize leaf acetyl-coenzyme A carboxylase. Arch. Biochem. Biophys. 228:8696.Google Scholar
100. Nikolau, B. J., Wurtele, E. S., and Stumpf, P. K. 1984. Tissue distribution of acetyl-coenzyme A carboxylase in leaves. Plant Physiol. 75:895901.Google Scholar
101. Norman, H. A. and St. John, J. B. 1987. Differential effects of a substituted pyridazinone, BAS 13-338, on pathways of monogalactosyldiacylglycerol synthesis in Arabidopsis . Plant Physiol. 85:684688.Google Scholar
102. Norman, H. A., Pillai, P., and St. John, J. B. 1990. In vitro effects of a substituted pyridazinone, BASF 13-338, on activity of fatty acid desaturases from soybean chloroplasts. Abstr. Weed Sci. Soc. Am. 30:81.Google Scholar
103. Numa, S. and Tanabe, T. 1984. Acetyl-coenzyme A carboxylase and its regulation. Pages 127 in Neuberger, A. and Van Deener, L.L.M., eds. Fatty Acid Metabolism and its Regulation. Elsevier, New York.Google Scholar
104. Parker, W. B., Somers, D. A., Wyse, D. L., Keith, R. A., Burton, J. D., Gronwald, J. W., and Gengenbach, B. G. 1990. Selection and characterization of sethoxydim-tolerant maize tissue cultures. Plant Physiol. 92:12201225.Google Scholar
105. Parker, W. B., Marshall, L. C., Burton, J. D., Somers, D. A., Wyse, D. L., Gronwald, J. W., and Gengenbach, B. G. 1990. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. Proc. Natl. Acad. Sci. U.S.A. 87:71757179.Google Scholar
106. Rendina, A. R. and Felts, J. M. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl-CoA carboxylase from grasses. Plant Physiol. 86:983986.Google Scholar
107. Rendina, A. R., Felts, J. M., Beaudoin, J. D., Craig-Kennard, A. C., Look, L. L., Paraskos, S. L., and Hagenah, J. A. 1988. Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides. Arch. Biochem. Biophys. 265:219225.Google Scholar
108. Rendina, A. R., Beaudoin, J. D., Craig-Kennard, A. C., and Breen, M. K. 1989. Kinetics of inhibition of acetyl-coenzyme A carboxylase by the aryloxyphenoxypropionate and cyclohexanedione graminicides. Proc. Brighton Crop Prot. Conf.—Weeds 1:163172.Google Scholar
109. Rivera, C. M. and Penner, D. 1979. Effect of herbicides on plant cell membrane lipids. Pages 4576 in Gunther, F. A. and Gunther, J. D., eds. Residue Rev. Vol. 70. Springer-Verlag, New York.Google Scholar
110. Sandmann, G., Kunert, K-J., and Böger, P. 1981. Bleaching activity and chemical constitution of phenylpyridazinones. Pestic. Biochem. Physiol. 15:288293.Google Scholar
111. Sandmann, G., Clark, I. E., Bramley, P. M., and Böger, P. 1984. Inhibition of phytoene desaturase—the mode of action of certain bleaching herbicides. Z. Naturforsch. 39c:443449.Google Scholar
112. Schuphan, I. and Casida, J. E. 1979. S-chloroallyl thiocarbamate herbicides: Chemical and biological formation and rearrangement of diallate and triallate sulfoxides. J. Agric. Food Chem. 27:10601067.Google Scholar
113. Secor, J. and Cséke, C. 1988. Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol. 86:1012.CrossRefGoogle ScholarPubMed
114. Secor, J., Cséke, C., and Owen, W. J. 1989. The discovery of the selective inhibition of acetyl coenzyme A carboxylase activity by two classes of graminicides. Proc. Brighton Crop Prot. Conf.—Weeds. 1:145154.Google Scholar
115. Sharp, D. B. 1988. Alachlor. Pages 301333 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Vol. 3. Marcel-Dekker, New York.Google Scholar
116. Shimabukuro, R. H. 1990. Selectivity and mode of action of the postemergence herbicide diclofop-methyl. Plant Growth Regulator Soc. Am. Quart. 18:3754.Google Scholar
117. Shimabukuro, M. A., Shimabukuro, R. H., and Walsh, W. C. 1982. The antagonism of IAA-induced hydrogen ion extrusion and coleoptile growth by diclofop-methyl. Physiol. Plant. 56:444452.Google Scholar
118. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem. 27:615623.Google Scholar
119. Slabas, A. R. and Hellyer, A. 1985. Rapid purification of a high molecular weight subunit polypeptide form of rape seed acetyl-CoA carboxylase. Plant Sci. 39:177182.CrossRefGoogle Scholar
120. Stanger, C. E. and Appleby, A. P. 1989. Italian ryegrass (Lolium multiflorum) accessions tolerant to diclofop. Weed Sci. 37:350352.Google Scholar
121. Still, G. G., Davis, D. G., and Zander, G. L. 1970. Plant epicuticular lipids: Alteration by herbicidal carbamates. Plant Physiol. 46:307314.Google Scholar
122. St. John, J. B. 1976. Manipulation of galactolipid fatty acid composition with substituted pyridazinones. Plant Physiol. 57:3840.Google Scholar
123. St. John, J. B. 1982. Effects of herbicides on the lipid composition of plant membranes. Pages 97109 in Moreland, D. E., St. John, J. B., and Hess, F. D., eds. Biochemical Responses Induced by Herbicides. Am. Chem. Soc., Washington, DC.Google Scholar
124. St. John, J. B. and Hilton, J. L. 1976. Structure versus activity of substituted pyridazinones as related to mechanism of action. Weed Sci. 24:579582.Google Scholar
125. St. John, J. B., Christiansen, M. N., Ashworth, E. N., and Gentner, W. A. 1979. Effect of BASF 13-338, a substituted pyridazinone, on linolenic acid levels and winterhardiness of cereals. Crop Sci. 19:65–39.Google Scholar
126. Stoltenberg, D. E. 1988. Selectivity and mechanism of action of sethoxydim and haloxyfop. Ph.D. Thesis. Univ. Minnesota. 48 pp.Google Scholar
127. Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Burton, J. D., Somers, D. A., and Gengenbach, B. G. 1989. Effect of sethoxydim and haloxyfop on acetyl-coenzyme A carboxylase activity in Festuca species. Weed Sci. 37:512516.Google Scholar
128. Strang, R. H. and Rogers, R. L. 1974. Behavior and fate of two phenylpyridazinone herbicides in cotton, corn, and soybean. J. Agric. Food Chem. 22:11191125.Google Scholar
129. Stumpf, P. K. 1987. The biosynthesis of saturated fatty acids. Pages 121136 in Stumpf, P. K., ed. The Biochemistry of Plants. Vol. 9. Lipids: Structure and Function. Academic Press, London.Google Scholar
130. Swisher, B. A. and Corbin, F. T. 1982. Behavior of BAS-9052 OH in soybean (Glycine max) and Johnsongrass (Sorghum halepense) plant and cell cultures. Weed Sci. 30:640650.Google Scholar
131. Tanabe, T., Wada, K., Okazaki, T., and Numa, S. 1975. Acetyl-coenzyme-A carboxylase from rat liver: Subunit structure and proteolytic modification. Eur. J. Biochem. 57:1524.Google Scholar
132. Turnham, E. and Northcote, D. H. 1983. Changes in the activity of acetyl-CoA carboxylase during rape-seed formation. Biochem. J. 212:223229.Google Scholar
133. Uchiyama, M., Washio, N., Ikai, T., Igarashi, H., and Suzuki, K. 1986. Stereospecific responses to (R)-(+)-and (S)-(0)-quizalofop-ethyl in tissues of several plants. J. Pestic. Sci. 11:459467.Google Scholar
134. Walker, K. A. and Harwood, J. L. 1986. Evidence for separate elongation enzymes for very-long-chain-fatty-acid synthesis in potato (Solanum tuberosum). Biochem. J. 237:4146.Google Scholar
135. Walker, K. A., Ridley, S. M., and Harwood, J. L. 1988. Effects of the selective herbicide fluazifop on fatty acid synthesis in pea (Pisum sativum) and barley (Hordeum vulgare). Biochem. J. 254:811817.Google Scholar
136. Walker, K. A., Ridley, S. M., Lewis, T., and Harwood, J. L. 1988. Fluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem. J. 254:307310.Google Scholar
137. Wang, X-M, Hildebrand, D. F., Norman, H. A., Dahmer, M. L., St. John, J. B., and Collins, G. B. 1987. Reduction of linolenate content in soybean cotyledons by a substituted pyridazinone. Phytochemistry 26:955960.Google Scholar
138. Warmund, M. R., Kerr, H. D., and Peters, E. J. 1985. Lipid metabolism in grain sorghum (Sorghum bicolor) treated with alachlor plus flurazole. Weed Sci. 33:2528.Google Scholar
139. Weisshaar, H. and Böger, P. 1987. Primary effects of chloroacetamides. Pestic. Biochem. Physiol. 28:286293.Google Scholar
140. Weisshaar, H., Retzlaff, G., and Böger, P. 1988. Chloroacetamide inhibition of fatty acid synthesis. Pestic. Biochem. Physiol. 32:212216.Google Scholar
141. Wilkinson, R. E. 1974. Sicklepod surface wax response to photoperiod and S-(2,3-dichloroallyl)-diisopropylthiocarbamate (Diallate). Plant Physiol. 53:269275.Google Scholar
142. Wilkinson, R. E. 1982. Alachlor influence on sorghum growth and gibberellin precursor synthesis. Pestic. Biochem. Physiol. 17:177184.Google Scholar
143. Wilkinson, R. E. 1983. Gibberellin precursor biosynthesis inhibition by EPTC and reversal by R-25788. Pestic. Biochem. Physiol. 19:321329.Google Scholar
144. Wilkinson, R. E. 1986. Diallate inhibition of gibberellin biosynthesis in sorghum coleoptiles. Pestic. Biochem. Physiol. 25:9397.Google Scholar
145. Wilkinson, R. E. 1988. Carbamothioates. Pages 245300 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Vol. 3. Marcel-Dekker, New York.Google Scholar
146. Wilkinson, R. E. and Hardcastle, W. S. 1969. EPTC effects on sicklepod petiolar fatty acids. Weed Sci. 17:335338.Google Scholar
147. Wilkinson, R. E. and Hardcastle, W. S. 1970. EPTC effects on total leaflet fatty acids and hydrocarbons. Weed Sci. 18:125128.Google Scholar
148. Wilkinson, R. E. and Smith, A. E. 1975. Thiocarbamate inhibition of fatty acid biosynthesis in isolated spinach chloroplasts. Weed Sci. 23:100104.Google Scholar
149. Wilkinson, R. E. and Smith, A. E. 1976. Butylate, pebulate, and vernolate inhibition of plant fatty acid biosynthesis. Phytochemistry 15:841842.Google Scholar
150. Wilkinson, R. E. and Ashley, D. 1979. EPTC induced modification of gibberellin biosynthesis. Weed Sci. 27:270274.Google Scholar
151. Wilkinson, R. E. and Oswald, T. H. 1987. S-ethyl dipropylthiocarbamate (EPTC) and 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid) inhibitions of synthesis of acetyl-coenzyme A derivatives. Pestic. Biochem. Physiol. 28:3843.Google Scholar
152. Willemot, C., Slack, C. R., Browse, J., and Roughan, P. G. 1982. Effect of BASF 13—338, a substituted pyridazinone, on lipid metabolism in leaf tissue of spinach, pea, linseed, and wheat. Plant Physiol. 70:7881.Google Scholar
153. Winkler, D. A., Liepa, A. J., Anderson-McKay, J. E., and Hart, N. K. 1989. A molecular graphics study of factors influencing herbicidal activity of oximes of 3-acyl-tetrahydro-2H-pyran-2,4-diones. Pestic. Sci. 27:4563.Google Scholar
154. Wright, J. P. and Shimabukuro, R. H. 1987. Effects of diclofop and diclofop-methyl on the membrane potentials of wheat and oat coleoptiles. Plant Physiol. 85:188193.Google Scholar
155. Wurtele, E. S. and Nikolau, B. J. 1990. Plants contain multiple biotin enzymes: Discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and pyruvate carboxylase in the plant kingdom. Arch. Biochem. Biophys. 278:179186.Google Scholar
156. Yeh, L-A and Kim, K-H. 1980. Regulation of acetyl-CoA carboxylase: Properties of CoA activation of acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. U.S.A. 7:33513355.Google Scholar
157. Yeh, L-A, Lee, K-H, and Kim, K-H. 1980. Regulation of rat liver acetyl-CoA carboxylase: Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J. Biol. Chem. 255:23082314.Google Scholar
158. Yenne, S. P. and Hatzios, K. K. 1989. Influence of oxime ether safeners and metolachlor on acetate incorporation into lipids and on acetyl-CoA carboxylase of grain sorghum. Pestic. Biochem. Physiol. 35:146154.Google Scholar
159. Zama, P. and Hatzios, K. K. 1987. Interactions between the herbicide metolachlor and the safener CGA-92194 at the levels of uptake and macromolecular synthesis in sorghum leaf protoplasts. Pestic. Biochem. Physiol. 27:8696.Google Scholar