Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:56:01.076Z Has data issue: false hasContentIssue false

Herbicidal Activity of Three Sesquiterpene Lactones on Wild Oat (Avena fatua) and Their Possible Mode of Action

Published online by Cambridge University Press:  20 January 2017

Samir A. M. Abdelgaleil*
Affiliation:
Department of Pesticides Chemistry, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
Neama Abdel-Razeek
Affiliation:
Department of Pesticides Chemistry, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
Salah A. Soliman
Affiliation:
Department of Pesticides Chemistry, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
*
Corresponding author's E-mail: samir1969us@yahoo.com

Abstract

Inhibitory effects of two sesquiterpene lactones, costunolide and parthenolide, isolated from dichloromethane extract of the stem bark of southern magnolia and a parthenolide derivative, 1,10-epoxyparthenolide, were evaluated on germination and seedling growth of wild oat. The sesquiterpene lactones effected a significant reduction of seed germination, particularly at the highest concentrations of 200, 400, and 600 mg L−1, with costunolide being the most active one. Furthermore, the three sesquiterpenes strongly inhibited root and shoot growth of the weed. However, the inhibition of root growth by all compounds was greater than that of shoot growth. Parthenolide inhibited growth of both root and shoot more strongly than the other compounds and a reference herbicide imazamethabenz. At a concentration of 100 mg L−1, parthenolide caused 87 and 41% growth inhibition of root and shoot, respectively. Parthenolide was tested for its effect on acetolactate synthase (ALS) activity. The compound inhibited the enzyme in a concentration-dependent manner, with 50% inhibition of 51.44 µM. The results of this study indicated that the herbicidal activity of the isolated sesquiterpene may be attributed to inhibition of ALS. The promising phytotoxic activity of sesquitepene lactones reported here could be considered a starting point for developing environmentally safer herbicides.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abdelgaleil, S. A. M. 2005. Molluscicidal and insecticidal properties of sesquiterpene lactones and extracts of Magnolia grandiflora L. J. Pest Cont. Environ. Sci. 13:118.Google Scholar
Abdelgaleil, S. A. M. and Ahmed, S. M. 2005. In vitro activity of extracts and sesquiterpene lactones of Magnolia grandiflora L. against six plant pathogenic bacteria. Alex. Sci. Exch. J. 26:158163.Google Scholar
Ahmed, S. M. and Abdelgaleil, S. A. M. 2005. Antifungal activity of extracts and sesquiterpene lactones from Magnolia grandiflora (Magnoliaceae). Int. J. Agric. Biol. 7:638642.Google Scholar
Amoo, S. O., Ojo, A. U., and Van Staden, J. 2008. Allelopathic potential of Tetrapleura tetraptera leaf extracts on early seedling growth of five agricultural crops. S. Afr. J. Bot. 74:149152.Google Scholar
Baruah, N. C., Sarma, J. C., Barua, N. C., Sarma, S., and Sharma, R. P. 1994. Germination and growth inhibitory sesquiterpene lactones and a flavone from Tithonia diversifolia . Phytochemistry. 36:2936.Google Scholar
Batish, D. R., Kohli, R. K., Singh, H. P., and Xaxena, D. B. 1997. Studies on herbicidal activity of parthenin, a constituent of Parthenium hysterophorus towards billgoat weed (Ageratum conyzoides). Curr. Sci. 73:369371.Google Scholar
Batish, D. R., Singh, H. P., Kohli, R. K., Xaxena, D. B., and Kaur, S. 2002. Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa . Environ. Exp. Bot. 47:149155.Google Scholar
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248254.Google Scholar
Chon, S-U., Jang, H-G., Kim, D-K., Kim, Y-M., Boo, H-O., and Kim, Y-J. 2005. Allelopathic potential in lettuce (Lactuca sativa L.) plants. Sci. Hort. 106:309317.Google Scholar
Cohort Software Inc 1985. Costat User's Manual. Version 3. Tucson, AZ Cohort.Google Scholar
Dayan, F. E., Hernández, A., Allen, S. T., Moraes, R. T., Vroman, J. A., Avery, M. A., and Duke, S. O. 1999. Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry. 50:607614.Google Scholar
Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., and Romagni, J. G. 2002. Chemicals from nature for weed management. Weed Sci. 50:138151.Google Scholar
El-Feraly, F. S. and Chan, Y. M. 1978. Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin from Magnolia grandiflora L. J. Pharma. Sci. 67:347350.CrossRefGoogle ScholarPubMed
Finney, D. J. 1971. Probit Analysis. 3rd ed. London Cambridge University Press. 318.Google Scholar
Galindo, J. C. G., Hernandez, A., Dayan, F. E., Tellez, M. R., Macías, F. A., Paul, R. N., and Duke, S. O. 1999. Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry. 52:805813.CrossRefGoogle Scholar
Hegde, R. S. and Miller, D. A. 1990. Allelopathy and autotoxicity in alfalfa: characterization and effects of preceding crops and residue incorporation. Crop Sci. 30:12551259.Google Scholar
Kohli, R. K., Batish, D., and Singh, H. P. 1998. Allelopathy and its implications in agroecosystems. J. Crop Prod. 1:169202.Google Scholar
Macías, F. A., Oliva, R. M., Varela, R. M., Torres, A., and Molinillo, J. M. G. 1999. Allelochemicals from sunflower leaves cv. Peredovick. Phytochemistry. 52:613621.Google Scholar
Macías, F. A., Velasco, R. F., Alvarez, J. A., Castellano, D., and Galindo, J. C. G. 2004. Synthesis of melampolides and cis, cis-germacranolides as natural herbicide models. Tetrahedron. 60:84778488.Google Scholar
Neerman, M. F. 2003. Sesquiterpene lactones: a diverse class of compounds found in essential oils possessing antibacterial and antifungal properties. Int. J. Aromather. 13:114120.Google Scholar
Newman, E. I. and Rovira, A. D. 1975. Allelopathy among some British grassland species. J. Ecol. 63:727737.Google Scholar
Pandey, D. K. 1996. phytotoxicity of sesquiterpene lactone parthenin on aquatic weeds. J. Chem. Ecol. 22:151160.Google Scholar
Picman, A. K. 1986. Biological activities of sesquiterpenes. Biochem. System. Ecol. 14:255281.Google Scholar
Rice, E. L. 1984. Allelopathy. 2nd ed. New York Academic Press. 17.Google Scholar
Rodriguez, E., Towers, G. H. N., and Mitchell, J. C. 1976. Biological activities of sesquiterpene lactones. Phytochemistry. 15:15731580.CrossRefGoogle Scholar
Tanaka, Y. 2003. Properties of acetolactate synthase from sulfonylurea-resistant Scirpus juncoides Roxb. var. ohwianus T. Koyama. Pestic. Biochem. Physiol. 77:147153.Google Scholar
Turk, M. A. and Tawaha, A. M. 2002. Inhibitory effects of aqueous extracts of black mustard on germination and growth of lentil. Pak. J. Agron. 1:2830.CrossRefGoogle Scholar
Vyvyan, J. R. 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron. 58:16311646.Google Scholar
Westerfield, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.Google Scholar
Whittaker, D. C. and Feeny, P. P. 1977. Allelochemicals: chemical interactions between species. Science. 171:757770.CrossRefGoogle Scholar