Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T00:28:03.647Z Has data issue: false hasContentIssue false

DNA-Based Marker Systems to Determine Genetic Diversity of Weedy Species and Their Application to Biocontrol

Published online by Cambridge University Press:  12 June 2017

Scott J. Nissen
Affiliation:
Dep. Agron., Univ. Nebraska
Robert A. Masters
Affiliation:
U.S. Dep. Agric., Agric. Res. Ser.
Donald J. Lee
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68583-0915
Martha L. Rowe
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68583-0915

Abstract

DNA-based molecular markers may provide information about introduced weedy species that would be useful in biological weed control efforts. Chloroplast DNA restriction fragment length polymorphisms (cpDNA RFLP) and random amplified polymorphic DNA (RAPD) analysis are two DNA-based marker techniques that can provide estimates of genetic variation in native and introduced populations of weedy species. Profiles provided by these techniques could furnish the necessary information to determine the geographic origins of introduced species and provide evidence for multiple introductions. Although DNA-based markers would not necessarily identify the genetic basis for host-pest compatibility, they would enable identification of specific host genotypes. Current criteria for selecting a weedy species as a target for biological control are primarily political and economic. The importance of genetic diversity and population structure in determining the vulnerability of plant populations to insects or diseases has not been fully appreciated. Estimates of genetic diversity based on DNA marker analysis could be used as one criteria for determining which plants are targeted for biological control. The success of biological weed control efforts has been limited by the high levels of genetic diversity occurring in target weed specks and the lack of biocontrol agent and target weed compatibilities. DNA-based markers may be used to increase our understanding of these factors and contribute to the success of biological weed control by helping to target the most vulnerable species and provide more realistic expectations of the potential for success given available resources.

Type
Special Topics
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Andersen, W. R. and Fairbanks, D. J. 1990. Molecular markers: important tools for plant genetic resource characterization. Diversity 6:5153.Google Scholar
2. Baird, E., Cooper-Bland, S., Waugh, R., DeMaine, M., and Powell, W. 1992. Molecular characterization of inter- and intraspecific somatic hybrids of potato using randomly amplified polymorphic DNA (RAPiD) markers. Mol. Gen. Genet. 233:469475.Google Scholar
3. Barrett, S.C.B. 1982. Genetic variation in weeds. Pages 78112 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds With Plant Pathogens, John Wiley & Sons, New York.Google Scholar
4. Burdon, J. J. and Marshall, D. R. 1981. Biological control and the reproductive mode of weeds. J. Appl. Ecol. 18:649658.Google Scholar
5. Clegg, M. T. and Zurawski, G. 1992. Chloroplast DNA and the study of plant phylogeny: present and future prospects. Pages 113 in Soltis, P. S., Soltis, D. E., and Doyle, J. J., eds. Molecular Systematics of Plants. Routledge Chapman & Hall, Inc. New York. pp. 434.Google Scholar
6. Close, P. S., Shoemake, R. C., and Keim, P. 1989. Distribution of restriction site polymorphism within the chloroplast genome of the genus Glycine, subgenus Soja . Theor. Appl. Genet. 77:768776.Google Scholar
7. Colosi, J. C. and Schaal, B. A. 1992. Genetic variation in wild proso millet (Panicum miliaceum L.). Proc. North Central Weed Sci. Soc. 47:2122.Google Scholar
8. Colosi, J. C., and Schaal, B. A. 1994. Weedy proso millet (Panicum miliaceum L.) is genetically variable and genetically distinct from crop varieties of proso millet. Weed Sci. Soc. Amer. Abs. 34:98.Google Scholar
9. Corriveau, J. L. and Coleman, A. W. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer. J. Bot. 75:14431458.CrossRefGoogle Scholar
10. Curtis, S. E. and Clegg, M. T. 1984. Molecular evolution of chloroplast DNA sequences. Mol. Biol. Evol. 1:291301.Google ScholarPubMed
11. Dice, L. R. 1945. Measurements of the amount of ecologic association between species. Ecology 26:297302.Google Scholar
12. Dickman, M. B. 1992. Molecular biology of plant-parasite interactions. Pages 177202 in Melting, F. B. ed. Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker, New York.Google Scholar
13. Donoghue, M. J. and Sanderson, M. J. 1992. The suitability of molecular and morphological evidence in reconstructing plant phylogeny. Pages 340368 in Soltis, P. S., Soltis, D. E., and Doyle, J. J., eds. Molecular Systematics of Plants. Routledge, Chapman & Hall, Inc. New York.Google Scholar
14. Erlich, H. A. 1989. PCR Technology: Principles and Applications for DNA Amplification. Stockton Press. New York.Google Scholar
15. Feinberg, A. P. and Vogelstein, B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments with high specific activity. Anal. Biochem. 132:613.Google Scholar
16. Funk, V. A. 1985. Phylogenetic patterns and hybridization. Ann. Missouri Bot. Gard. 72:681715.Google Scholar
17. Gower, J. C. 1966. Some distant properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325338.CrossRefGoogle Scholar
18. Harley, K.L.S. and Forno, I. W. 1992. Biological Control of Weeds: A Handbook for Practioners and Students, Inkata Press, Melbourne, Australia. pages 74.Google Scholar
19. Harris, P. 1978. The biological control of leafy spurge. Page 2534 in Proc. Leafy Spurge Symp. North Dakota State Univ. Coop. Ext. Serv. Google Scholar
20. Harris, P., Dunn, P. H., Schroeder, D., and Vonmoos, R. 1985. Biological control of leafy spurge in North America. Pages 7992 in Watson, A. K., ed. Leafy Spurge Monograph No. 3. Weed Sci. Soc. Amer. Champaign, IL.Google Scholar
21. Harris, S. A. and Ingram, R. 1991. Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon 40:393412.Google Scholar
22. Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B.-Y., Li, Y.-Q., Kano, A., Nishizawa, Y., Hirai, A., Shinozaki, K., and Sugiura, M. 1989. The complete sequence of the rice (Oryza sativa L.) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217:185194.CrossRefGoogle Scholar
23. Holt, J. 1994. Genetic variation in life history traits in yellow nutsedge (Cyperus esculentus) from California. Weed Sci. 42:385389.CrossRefGoogle Scholar
24. Horak, M. J. and Holt, J. S. 1986. Isozyme variability and breeding systems in populations of yellow nutsedge (Cyperus esculentus). Weed Sci. 34:538543.Google Scholar
25. Hosaka, K. and Hanneman, R. E. 1988. Origin of chloroplast DNA diversity in the Andean potatoes. Theor. Appl. Genet. 76:333340.Google Scholar
26. Hou, Y. and Sterling, T. M. 1995. Isozyme variation in broom snakeweed (Gutierrezia sarothrae). Weed Sci. 43:156162.Google Scholar
27. Huffaker, C. B. 1974. Fundamentals of biological weed control. Pages 631649 in DeBach, P. ed. Biological Control of Insects Pests and Weeds. Chapman and Hall Limited. London.Google Scholar
28. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. 1990. PCR Protocols: A Guide to Methods and Applications. Academic Press, New York. 278 pp.Google Scholar
29. Julien, M. H. 1992. Biological Control of Weeds: A World Catalogue of Agents and their Target Weeds. C.A.B. International. Wallingford, UK. 186 pages.Google Scholar
30. Kemble, R. J. 1987. A rapid, single leaf, nucleic acid assay for determining the cytoplasmic organelle complement of rapeseed and related Brassica species. Theor. Appl. Genet. 73:364370.CrossRefGoogle ScholarPubMed
31. Levy, M., Correa-Victoria, F. J., Zeigler, R. S., Xu, S., and Hamer, J. E. 1993. Genetic diversity of the rice blast fungus in a disease Nursery in Colombia. Phytopathology 83:14271433.Google Scholar
32. Lumaret, R., Bowman, C. M., and Dyer, T. A. 1989. Autopolyploidy in Dactylis glomerata L.: further evidence from studies of chloroplast DNA variation. Theor. Appl. Genet. 78:393399.Google Scholar
33. Lym, R., Kapaun, J. A., Carlson, R. B., and Mundal, D. 1993. Effects of herbicide treatments and leafy spurge biotype on Spurgia esulae populations. Proc. Leafy Spurge Symp. Colorado State Univ. p. 46.CrossRefGoogle Scholar
34. Mahlburg, P. G., Davis, D. G., Galitz, D. S., and Manners, G. D. 1987. Laticifers and the classification of Euphorbia: the chemotaxonomy of Euphorbia esula L. Bot. J. Linn. Soc. 94:165180.Google Scholar
35. Manners, G. D. and Davis, D. G. 1984. Epicuticular wax constituents of North American and European Euphorbia esula biotypes. Phytochem. 23:10591062.Google Scholar
36. Mulligan, G. A. and Moore, R. J. 1961. Natural selection among hybrids between Carduus acanthoides and C. nutans in Ontario. Canadian J. Bot. 39:269279.Google Scholar
37. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. 190 pp.Google Scholar
38. Nei, M. and Li, W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76:52695273.CrossRefGoogle ScholarPubMed
39. Newbury, H. J. and Ford-Lloyd, B. V. 1993. The use of RAPD for assessing variation in plants. Plant Growth Reg. 12:4351.Google Scholar
40. Nissen, S. J., Masters, R. A., Lee, D. J., and Rowe, M. L. 1992. Comparison of restriction fragment length polymorphisms in chloroplast DNA of five leafy spurge (Euphorbia spp.) accessions. Weed Sci. 40:6367.Google Scholar
41. Palmer, J. D. 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19:325354.Google Scholar
42. Palmer, J. D. 1986. Isolation and structural analysis of chloroplast DNA. Meth. Enzymol. 118:167186.Google Scholar
43. Palmer, J. D. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Amer. Nat. 130:S6S29.Google Scholar
44. Palmer, J. D., Osorio, B., Aldrich, J., and Thompson, W. F. 1987. Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr. Genet. 11:275286.CrossRefGoogle Scholar
45. Palmer, J. D. and Thompson, W. F. 1982. Chloroplast DNA rearrangement are more frequent when an inverted repeat sequence is lost. Cell 29:537550.Google Scholar
46. Palmer, J. D., Shields, C. R., Cohen, D. B., and Orten, T. J. 1983. Chloroplast DNA evolution and the origin of Brassica species. Theor. Appl. Genet. 65:181189.Google Scholar
47. Palmer, J. D. and Zamir, D. 1982. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc. Natl. Acad. Sci. USA 76:50065010.CrossRefGoogle Scholar
48. Pritchard, T. 1960. Race formation in weedy species with special reference to Euphorbia cypressias L. and Hypericum perforatum L. Pages 6166 in Harper, J. L., ed. The Biology of Weeds.Google Scholar
49. Putievsky, E., Weiss, P., and Marshall, D. R. 1980. Interspecific hybridization between Emex australis and E. spinosa . Australian J. Bot. 28:323328.Google Scholar
50. Quiros, C. F., Hu, J., This, P., Cheve, A. M., and Delseny, M. 1991. Development and chromosomal localization of genome-specific markers by polymerase chain reaction in Brassica . Theor. Appl. Genet. 82:627632.Google Scholar
51. Rieseberg, L. H., Soltis, D. E., and Palmer, J. D. 1988. A molecular reexamination of introgression between Helianthus annuus and H. bolanderi (Compositae). Evolution 43:227238.Google Scholar
52. Rieseberg, L. H. and Soltis, D. E. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plants 5:6584.Google Scholar
53. Rohlf, F. J. 1989. NTSYS-pc Numerical taxonomy and multivariate analysis system., version 1.50. Exeter Publ., New York, NY.Google Scholar
54. Schaal, B. A., O'Kane, S. L., Rogstad, S. H. 1991. DNA variation in plant populations. Trends Ecol. Evol. 6:229233.Google Scholar
55. Sheppard, A. W. 1992. Predicting biological weed control. Trends Ecol. Evol. 7:290290.CrossRefGoogle ScholarPubMed
56. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Haysida, N., Matsubayashi, T., Zaita, N., Chungwongse, J., Obokata, J., Yamaogashira, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kata, A., Tohdoh, N., Shimada, H., and Sugiura, M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome. Plant Mol. Biol. Rep. 4:110147.Google Scholar
57. Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503517.Google Scholar
58. Stoneking, M., Jorde, L. B., Bhatia, K., and Wilson, A. C. 1990. Geographic variation in human mitochondrial DNA from Papua New Guinea. Genetics 124:717733.Google Scholar
59. Torell, J. M., Evans, J. O., Valcarce, R. V., and Smith, G. G. 1989. Chemical characterization of leafy spurge (Euphorbia esula L.) by curie-point pyrolysis-gas chromatography-pattern recognition. J. Anal. Appl. Pyrol. 14:223236.Google Scholar
60. Warwick, S. I. 1987. Isozyme variation in proso millet (Panicum miliaceum L.). J. Hered. 78:210212.Google Scholar
61. Warwick, S. I. 1990. Genetic variation in weeds—with particular reference to Canadian Agricultural weeds. Pages 318 in Kawano, S., ed. Biological Approaches and Evolutionary Trends in Plants. Academic Press. New York.Google Scholar
62. Weining, S. and Langridge, P. 1991. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor. Appl. Genet. 82:209216.Google Scholar
63. Welsh, J., Honeycutt, R. J., McClelland, M. and Sobral, B.W.S. 1991. Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR). Theor. Appl. Genet. 82:473476.Google Scholar
64. Wilde, J., Waugh, R., and Powell, W. 1992. Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic DNA markers. Theor. Appl Genet. 83:871877.Google Scholar
65. Zurawski, G. and Clegg, M. T. 1987. Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev. Plant Physiol. 38:391418.Google Scholar