Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:10:48.710Z Has data issue: false hasContentIssue false

The tasks of amacrine cells

Published online by Cambridge University Press:  06 February 2012

RICHARD H. MASLAND*
Affiliation:
Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
*
*Address correspondence and reprint requests to: Dr. Richard H. Masland, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, 5th floor, Boston, MA 02114. E-mail: richard_masland@meei.harvard.edu

Abstract

Their unique patterns of size, numbers, and stratification indicate that amacrine cells have diverse functions. These are mostly unknown, as studies using imaging and electrophysiological methods have only recently begun. However, some of the events that occur within the amacrine cell population—and some important unresolved puzzles—can be stated purely from structural reasoning.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.R., Jones, B.W., Watt, C.B., Shaw, M.V., Yang, J.H., Demill, D., Lauritzen, J.S., Lin, Y., Rapp, K.D., Mastronarde, D., Koshevoy, P., Grimm, B., Tasdizen, T., Whitaker, R. & Marc, R.E. (2011). Exploring the retinal connectome. Molecular Vision 17, 355379.Google Scholar
Badea, T.C. & Nathans, J. (2004). Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. The Journal of Comparative Neurology 480, 331351.Google Scholar
Barlow, H.B. & Levick, W.R. (1965). The mechanism of directionally selective units in rabbit’s retina. The Journal of Physiology 178, 477504.Google Scholar
Briggman, K.L. & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology 16, 562570.Google Scholar
Burnside, B. (2001). Light and circadian regulation of retinomotor movement. Progress in Brain Research 131, 477485.Google Scholar
Chiao, C.C. & Masland, R.H. (2003). Contextual tuning of direction-selective retinal ganglion cells. Nature Neuroscience 6, 12511252.CrossRefGoogle ScholarPubMed
Cleland, B.G., Levick, W.R. & Wässle, H. (1975). Physiological identification of a morphological class of ganglion cell in the cat. The Journal of Physiology 248, 151171.Google Scholar
Coombs, J., van der List, D., Wang, G.Y. & Chalupa, L.M. (2006). Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123136.CrossRefGoogle ScholarPubMed
Contini, M. & Raviola, E. (2003). GABAergic synapses made by a retinal dopaminergic neuron. Proceedings of the National Academy of Sciences of the United States of America 100, 13581363.Google Scholar
Dacey, D.M. (1989). Axon-bearing amacrine cells of the macaque monkey retina. The Journal of Comparative Neurology 284, 275293.Google Scholar
Dacey, D. (2004). Origins of perception: Retinal ganglion cell diversity and the creation of parallel visual pathways. In The Cognitive Neurosciences, ed. Gazzaniga, M.S.Cambridge, MA: MIT Press.Google Scholar
Dacheux, R.F., Chimento, M.F. & Amthor, F.R. (2003). Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. The Journal of Comparative Neurology 456, 267278.Google Scholar
Demb, J. & Singer, J. (2012). Intrinsic properties and functional circuitry of the AII amacrine cell. Visual Neuroscience 29 (in press).Google Scholar
Dorenbos, R., Contini, M., Hirasawa, H., Gustincich, S. & Raviola, E. (2007). Expression of circadian clock genes in retinal dopaminergic cells. Visual Neuroscience 24, 573580.Google Scholar
Dowling, J.E. & Boycott, B.B. (1966). Organization of the primate retina: Electron microscopy. Proceedings of the Royal Society of London. Series B, Biological Sciences 166, 80111.Google Scholar
Ellias, S.A. & Stevens, J.K. (1980). The dendritic varicosity: A mechanism for electrically isolating the dendrites of cat retinal amacrine cells? Brain Research 196, 365372.CrossRefGoogle ScholarPubMed
Euler, T., Detwiler, P.B. & Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845852.Google Scholar
Famiglietti, E.V. (1992 a). Polyaxonal amacrine cells of rabbit retina: Morphology and stratification of PA1 cells. The Journal of Comparative Neurology 316, 391405.Google Scholar
Famiglietti, E.V. (1992 b). Polyaxonal amacrine cells of rabbit retina: Size and distribution of PA1 cells. The Journal of Comparative Neurology 316, 406421.Google Scholar
Famiglietti, E.V. (1992 c). Polyaxonal amacrine cells of rabbit retina: PA2, PA3, and PA4 cells: Light and electron microscopic studies with a functional interpretation. The Journal of Comparative Neurology 316, 422446.CrossRefGoogle ScholarPubMed
Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W. & Sanes, J.R. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 4551.CrossRefGoogle ScholarPubMed
Fried, S.I., Munch, T.A. & Werblin, F.S. (2005). Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron 46, 117127.Google Scholar
Grimes, W.N., Zhang, J., Graydon, C.W., Kachar, B. & Diamond, J.S. (2010). Retinal parallel processors: More than 100 independent microcircuits operate within a single interneuron. Neuron 65, 873885.CrossRefGoogle ScholarPubMed
Gollisch, T. & Meister, M. (2010). Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron 65, 150164.Google Scholar
Gustincich, S., Feigenspan, A., Sieghart, W. & Raviola, E. (1999). Composition of the GABA receptors of retinal dopaminergic neurons. The Journal of Neuroscience 19, 78127822.Google Scholar
Gustincich, S., Feigenspan, A., Wu, D.K., Koopman, L.J. & Raviola, E. (1997). Control of dopamine release in the retina: A transgenic approach to neural networks. Neuron 18, 723736.Google Scholar
Helmstaedter, M., Briggman, K.L. & Denk, W. (2011). High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nature Neuroscience, 14, 18011808.Google Scholar
Hirasawa, H., Puopolo, M. & Raviola, E. (2009). Extrasynaptic release of GABA by retinal dopaminergic neurons. Journal of Neurophysiology 102, 146158.Google Scholar
Hoffpauir, B., Mcmains, E. & Gleason, E. (2006). Nitric oxide transiently converts synaptic inhibition to excitation in retinal amacrine cells. Journal of Neurophysiology 95, 28662877.CrossRefGoogle ScholarPubMed
Jeon, C.-J., Strettoi, E. & Masland, R.H. (1998). The major cell populations of the mouse retina. The Journal of Neuroscience 18, 89368946.CrossRefGoogle ScholarPubMed
Keyser, K.T., Macneil, M.A., Dmitrieva, N., Wang, F., Masland, R.H. & Lindstrom, J.M. (2000). Amacrine, ganglion, and displaced amacrine cells in the rabbit retina express nicotinic acetylcholine receptors. Visual Neuroscience 17, 743752.Google Scholar
Kong, J.H., Fish, D.R., Rockhill, R.L. & Masland, R.H. (2005). Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits. The Journal of Comparative Neurology 489, 293310.Google Scholar
Levick, W.R., Oyster, C.W. & Davis, D.L. (1965). Evidence that McIlwain’s periphery effect is not a stray light artifact. Journal of Neurophysiology 28, 555559.CrossRefGoogle Scholar
Lin, B. & Masland, R.H. (2006). Populations of wide-field amacrine cells in the mouse retina. The Journal of Comparative Neurology 499, 797809.CrossRefGoogle ScholarPubMed
MacNeil, M.A. & Masland, R.H. (1998). Extreme diversity among amacrine cells: Implications for function. Neuron 20, 971982.CrossRefGoogle ScholarPubMed
MacNeil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E. & Masland, R.H. (1999). The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. The Journal of Comparative Neurology 413, 305326.Google Scholar
Marc, R.E. & Liu, W. (2000). Fundamental GABAergic amacrine cell circuitries in the retina: Nested feedback, concatenated inhibition, and axosomatic synapses. The Journal of Comparative Neurology 425, 560582.Google Scholar
Masland, R.H. (2001). The fundamental plan of the retina. Nature Neuroscience 4, 877886.Google Scholar
Masland, R.H. (2011). Cell populations of the retina: The Proctor lecture. Investigative Ophthalmology and Visual Science 52, 45814591.Google Scholar
Masland, R.H. & Cassidy, C. (1987). The resting release of acetylcholine by a retinal neuron. Proceedings of the Royal Society of London. Series B, Biological Sciences 232, 227238.Google Scholar
Masland, R.H. & Mills, J.W. (1979). Autoradiographic identification of acetylcholine in the rabbit retina. The Journal of Cell Biology 83, 159178.CrossRefGoogle ScholarPubMed
Masland, R.H., Mills, J.W. & Cassidy, C. (1984). The functions of acetylcholine in the rabbit retina. Proceedings of the Royal Society of London. Series B, Biological Sciences 223, 121139.Google Scholar
Molnar, A., Hsueh, H.A., Roska, B. & Werblin, F.S. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission. Journal of Computational Neuroscience 27, 569590.Google Scholar
O’Brien, B.J., Isayama, T., Richardson, R. & Berson, D.M. (2002). Intrinsic physiological properties of cat retinal ganglion cells. The Journal of Physiology 538, 787802.Google Scholar
Olveczky, B.P., Baccus, S.A. & Meister, M. (2003). Segregation of object and background motion in the retina. Nature 423, 401408.Google Scholar
Peichl, L. & Wässle, H. (1981). Morphological identification of on- and off-centre brisk transient (Y) cells in the cat retina. Proceedings of the Royal Society of London. Series B, Biological Sciences 212, 139153.Google Scholar
Peichl, L. & Wässle, H. (1983). The structural correlate of the receptive field centre of α ganglion cells in the cat retina. The Journal of Physiology 34, 309324.CrossRefGoogle Scholar
Phyllis, J.W. (2005). Acetylcholine release from the central nervous system: A 50-year retrospective. Critical Reviews in Neurobiology 17, 161217.Google Scholar
Rockhill, R.L., Daly, F.J., Macneil, M.A., Brown, S.P. & Masland, R.H. (2002). The diversity of ganglion cells in a mammalian retina. The Journal of Neuroscience 22, 38313843.Google Scholar
Roska, B. & Werblin, F. (2003). Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nature Neuroscience 6, 600608.CrossRefGoogle ScholarPubMed
Sandell, J.H., Masland, R.H., Raviola, E. & Dacheux, R.F. (1989). Connections of indoleamine-accumulating cells in the rabbit retina. The Journal of Comparative Neurology 283, 303313.CrossRefGoogle ScholarPubMed
Soodak, R.E., Shapley, R.M. & Kaplan, E. (1991). Fine structure of receptive-field centers of X and Y cells of the cat. Visual Neuroscience 6, 621628.CrossRefGoogle ScholarPubMed
Sun, W., Li, N. & He, S. (2002). Large-scale morphological survey of rat retinal ganglion cells. Visual Neuroscience 19, 483493.Google Scholar
Taylor, R. & Smith, W.R. (2012). The role of starburst amacrine cells in visual signal processing. Visual Neuroscience 29 (in press).Google Scholar
Vaney, D.I. (1991). The mosaic of amacrine cells in the mammalian retina. Progress in Retinal Research 9, 49100.Google Scholar
Vaney, D.I. (2002). Retinal neurons: Cell types and coupled networks. Progress in Brain Research 136, 239254.CrossRefGoogle ScholarPubMed
Vaney, D.I. (2004). Type 1 nitrergic (ND1) cells of the rabbit retina: Comparison with other axon-bearing amacrine cells. The Journal of Comparative Neurology 474, 149171.Google Scholar
Vaney, D.I., Peichl, L. & Boycott, B.B. (1988). Neurofibrillar long-range amacrine cells in mammalian retinae. Proceedings of the Royal Society of London. Series B, Biological Sciences 235, 203219.Google ScholarPubMed
Völgyi, B., Chheda, S. & Bloomfield, S.A. (2009). Tracer coupling patterns of ganglion cell subtypes in the mouse retina. The Journal of Comparative Neurology 512, 664687.CrossRefGoogle ScholarPubMed
Völgyi, B., Xin, D., Amarillo, Y. & Bloomfield, S.A. (2001). Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. The Journal of Comparative Neurology 440, 109125.Google Scholar
Wässle, H., Puller, C., Muller, F. & Haverkamp, S. (2009). Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. The Journal of Neuroscience 29, 106117.Google Scholar
Werblin, F.S. (2010). Six different roles for crossover inhibition in the retina. Correcting the nonlinearities in synaptic transmission. Visual Neuroscience 27, 18.Google Scholar
Werblin, F.S. (2011). The retinal hypercircuit: A repeating synaptic interactive motif underlying visual function. The Journal of Physiology 589, 36913702.CrossRefGoogle ScholarPubMed
Wilson, M., Nacsa, N., Hart, N.S., Weller, C. & Vaney, D.I. (2011). Regional distribution of nitrergic neurons in the inner retina of the chicken. Visual Neuroscience 28, 205220.Google Scholar
Wright, L.L. & Vaney, D.I. (2000). The fountain amacrine cells of the rabbit retina. Visual Neuroscience 17, 1145R1156R.Google Scholar
Yang, G. & Masland, R.H. (1994). Receptive fields and dendritic structure of directionally selective retinal ganglion cells. The Journal of Neuroscience 14, 52675280.Google Scholar