Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:42:58.045Z Has data issue: false hasContentIssue false

Surface color perception in three-dimensional scenes

Published online by Cambridge University Press:  06 September 2006

HUSEYIN BOYACI
Affiliation:
Department of Psychology, University of Minnesota, Minneapolis, Minnesota
KATJA DOERSCHNER
Affiliation:
Department of Psychology, New York University, New York, New York
JACQUELINE L. SNYDER
Affiliation:
Department of Psychology, New York University, New York, New York
LAURENCE T. MALONEY
Affiliation:
Department of Psychology, New York University, New York, New York Center for Neural Science New York University, New York, New York

Abstract

Researchers studying surface color perception have typically used stimuli that consist of a small number of matte patches (real or simulated) embedded in a plane perpendicular to the line of sight (a “Mondrian,” Land & McCann, 1971). Reliable estimation of the color of a matte surface is a difficult if not impossible computational problem in such limited scenes (Maloney, 1999). In more realistic, three-dimensional scenes the difficulty of the problem increases, in part, because the effective illumination incident on the surface (the light field) now depends on surface orientation and location. We review recent work in multiple laboratories that examines (1) the degree to which the human visual system discounts the light field in judging matte surface lightness and color and (2) what illuminant cues the visual system uses in estimating the flow of light in a scene.

Type
SURFACE COLOR PERCEPTION
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adelson, E.H. & Bergen, J.R. (1991). The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, eds. Landy, M.S. & Movshon, J.A., pp. 320. Cambridge, MA: MIT Press.
Adelson, E.H. & Pentland, A.P. (1996). The perception of shading and reflectance. In Perception as Bayesian Inference, eds. Knill, D. & Richards, W., pp. 409423. New York: Cambridge University Press.
Arend, L.E. & Spehar, B. (1993a). Lightness, brightness, and brightness contrast: 1. illuminance variation. Perception & Psychophysics 54, 446456.Google Scholar
Arend, L.E. & Spehar, B. (1993b). Lightness, brightness, and brightness contrast: 2. reflectance variation. Perception & Psychophysics 54, 457468.Google Scholar
Bäuml, K.-H. (1999). Simultaneous color constancy: how surface color perception varies with the illuminant. Vision Research 39, 15311550.Google Scholar
Belhumeur, P.N., Kriegman, D., & Yuille, A. (1999). The bas-relief ambiguity. International Journal of Computer Vision 35(1), 3344.Google Scholar
Bloj, M.G., Kersten, D., & Hurlbert, A.C. (1999). Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402, 877879.Google Scholar
Boyaci, H., Doerschner, K., & Maloney, L.T. (2004). Perceived surface color in binocularly-viewed scenes with two light sources differing in chromaticity. Journal of Vision 4, 664679.Google Scholar
Boyaci, H., Doerschner, K., & Maloney, L.T. (2006). Cues to an equivalent lighting model, Journal of Vision 6, 106118.Google Scholar
Boyaci, H., Maloney, L.T., & Hersh, S. (2003). The effect of perceived surface orientation on perceived surface albedo in three-dimensional scenes, Journal of Vision 3, 541553.Google Scholar
Ciurea, F. & Funt, B. (2004). Failure of luminance-redness correlation for illuminant estimation. Proceedings Twelfth Color Imaging Conference, pp. 4246.
Doerschner, K., Boyaci, H., & Maloney, L.T. (2004). Human observers compensate for secondary illumination originating in nearby chromatic surfaces, Journal of Vision 4, 92105.Google Scholar
Dror, R.O., Willsky, A., & Adelson, E.H. (2004). Statistical characterization of real-world illumination. Journal of Vision 4, 821837.Google Scholar
Epstein, W. (1961). Phenomenal orientation and perceived achromatic color. Journal of Psychology 52, 5153.Google Scholar
Fleming, R.W., Dror, R.O., & Adelson, E.H. (2003). Real-world illumination and the perception of surface reflectance properties. Journal of Vision 3, 347368.Google Scholar
Flock, H.R. & Freedberg, E. (1970). Perceived angle of incidence and achromatic surface color. Perception & Psychophysics 8, 251256.Google Scholar
Foster, D.H. & Nascimento, S.M.C. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings of the Royal Society of London B 257, 115121.Google Scholar
Gershun, A. (1936/1939). Svetovoe Pole (English: The Light Field), Moscow, 1936. Translated by P. Moon and G. Timoshenko (1939) in Journal of Mathematics and Physics 18, 51151.Google Scholar
Gilchrist, A.L. (1977). Perceived lightness depends on spatial arrangement. Science 195, 185187.Google Scholar
Gilchrist, A.L. (1980). When does perceived lightness depend on perceived spatial arrangement? Perception & Psychophysics 28, 527538.Google Scholar
Gilchrist, A.L. & Annan, Jr., A. (2002). Articulation effects in lightness: historical background and theoretical implications. Perception 31, 141150.Google Scholar
Gilchrist, A.L., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X.J., Spehar, B., Annan, V., & Economou, E. (1999). An anchoring theory of lightness perception. Psychological Review 106, 795834.Google Scholar
Golz, J. & MacLeod, D.I.A. (2002). Influence of scene statistics on colour constancy. Nature 415, 637640.Google Scholar
Granzier, J.J.M., Brenner, E., Cornelissen, F.W., & Smeets, J.B.J. (2005). Luminance–color correlation is not used to estimate the color of the illumination. Journal of Vision 5, 2027.Google Scholar
Hara, K., Nishino, K., & Ikeuchi, K. (2005). Light source position and reflectance estimation from a single view without the distant illumination assumption. IEEE Transactions on Pattern and Machine Intelligence 27, 493505Google Scholar
Haralick, R.M. & Shapiro, L.G. (1993). Computer and robot vision, Vol. 2. Reading, MA: Addison-Wesley.
Henderson, S.T. (1977). Daylight and its spectrum, 2nd Ed. Bristol, UK: Adam Hilger.
Hochberg, J.E. & Beck, J. (1954). Apparent spatial arrangements and perceived brightness. Journal of Experimental Psychology 47, 263266.Google Scholar
Hurlbert, A.C. (1998). Computational models of colour constancy. In Perceptual Constancy: Why things look as they do, eds. Walsh, V. & Kulikowski, J., pp. 283322. Cambridge, UK: Cambridge University Press.
Ikeda, M., Shinoda, H., & Mizokami, Y. (1998). Three dimensionality of the recognized visual space of illumination proved by hidden illumination. Optical Review 5, 200205.Google Scholar
Kaiser, P.K. & Boynton, R.M. (1996). Human color vision, 2nd Ed. Washington, DC: Optical Society of America.
Kardos, L. (1934). Ding und Schatten; Eine experimentelle Untersuchung über die Grundlagen des Farbsehens, Zeitschrift für Psychologie and Physiologie der Sinnesorgane, Ergänzungsband 23, Leipzig, Germany: Verlag von J.A. Barth. (Edited by Schumann, F., Jaensch, E.R. & Kroh, O.).
Katz, D. (1935). The World of Colour. London: Kegan, Paul, Trench, Trubner & Co.
Koenderink, J.J. & van Doorn, A.J. (1996). Illuminance texture due to surface mesostructure. Journal of the Optical Society of America A 13, 452463.Google Scholar
Koenderink, J.J., van Doorn, A.J., & Pont, S.C. (2004). Light direction from shad(ow)ed random Gaussian surfaces. Perception 33 (12), 14031404, special issue: Shadows and Illumination II.Google Scholar
Land, E.H. & McCann, J.J. (1971). Lightness and retinex theory. Journal of the Optical Society of America 61, 111.Google Scholar
Lee, Jr., R.L. & Hernández-Andrés, J. (2005a). Short-term variability of overcast brightness. Applied Optics 44, 57045711.Google Scholar
Lee, Jr., R.L. & Hernández-Andrés, J. (2005b). Colors of the daytime overcast sky. Applied Optics 44, 57125722.Google Scholar
MacLeod, D.I.A. & Golz, J. (2003). A computational analysis of colour constancy. In Colour Perception: Mind and the Physical World, eds. Mausfeld, R. & Heyer, D., pp. 205242. Oxford, UK: Oxford University Press.
Maloney, L.T. (1999). Physics-based approaches to modeling surface color perception. In Color Vision: From Genes to Perception, eds. Gegenfurtner, K.R. & Sharpe, L.T., pp. 387422. Cambridge, UK: Cambridge University Press.
Maloney, L.T., Boyaci, H., & Doerschner, K. (2005). Surface color perception as an inverse problem in biological vision. Proceedings of the SPIE-IS & T Electronic Imaging 5674, 1526.Google Scholar
Mausfeld, R. & Andres, J. (2002). Second-order statistics of colour codes modulate transformations that effectuate varying degrees of scene invariance and illumination invariance. Perception 31, 209224.Google Scholar
Nascimento, S.M.C. & Foster, D.H. (2000). Relational color constancy in achromatic and isoluminant images. Journal of the Optical Society of America A-Optics Image Science and Vision 17, 225231.Google Scholar
Pont, S.C. & Koenderink, J.J. (2003). Illuminance flow. In Computer Analysis of Images and Patterns, eds. Petkov, N. & Wetsenberg, M.A., pp. 9097. Berlin: Springer-Verlag.
Pont, S.C. & Koenderink, J.J. (2004). Surface illuminance flow. Proceedings Second International Symposium on 3D Data Processing Visualization and Transmission, eds. Aloimonos, Y. & Taubin, G.
Redding, G.M. & Lester, C.F. (1980). Achromatic color matching as a function of apparent test orientation, test and background luminance, and lightness or brightness instructions. Perception & Psychophysics 27, 557563.Google Scholar
Ripamonti, C., Bloj, M., Hauck, R., Kiran, K., Greenwald, S., Maloney, S.I., & Brainard, D.H. (2004). Measurements of the effect of surface slant on perceived lightness. Journal of Vision 4, 747763.Google Scholar
Snyder, J.L., Doerschner, K., & Maloney, L.T. (2005). Illumination estimation in three-dimensional scenes with and without specular cues. Journal of Vision 5, 863877.Google Scholar
te Pas, S.F. & Pont, S.C. (2005). Comparison of material and illumination discrimination performance for real rough, real smooth and computer generated smooth spheres. In Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization (A Coroña, Spain, August 26–28, 2005). APGV '05, vol. 95. ACM Press, New York, NY, 7581.
Yang, J.N. & Maloney, L.T. (2001). Illuminant cues in surface color perception: Tests of three candidate cues. Vision Research 41, 25812600.Google Scholar