Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:41:09.744Z Has data issue: false hasContentIssue false

Some visual and neurochemical correlates of refractive development

Published online by Cambridge University Press:  02 June 2009

Alan M. Laties
Affiliation:
Department of Ophthalmology, University of Pennsylvania School of MedicineScheie Eye Institute, Philadelphia
Richard A. Stone
Affiliation:
Department of Ophthalmology, University of Pennsylvania School of MedicineScheie Eye Institute, Philadelphia

Abstract

Increasing evidence indicates that the retina takes part in the postnatal regulation of eye growth, functioning in this respect to minimize refractive error. The evidence derives both from clinical observations in man and from experiments in animals. The discovery that visual form deprivation leads to an axial overgrowth of the eye and to myopia has opened the way to many current research initiatives. Neurochemical and immunocytochemical experiments in chick and monkey suggest that definable retinal neurons participate in the regulatory pathway controlling eye growth. The most comprehensive data presently implicate dopaminergic amacrine cells. Other important issues to be addressed include the relevance of an intact connection to the central nervous system and the precise retinal mechanism by which eye growth is regulated.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banks, M.S. (1980). Infant refraction and accommodation. International Ophthalmological Clinics 20, 205232.CrossRefGoogle ScholarPubMed
Curtin, B.J. (1985). The Myopias: Basic Science and Clinical Management. Philadelphia, Pennsylvania: Harper & Row.Google Scholar
Donders, F.C. (1864). On the Anomalies of Accommodation and Refraction of the Eye. London, England: The New Sydenham Society.Google Scholar
Dowling, J.E. & Cowan, W.M. (1966). An electron-microscopic study of normal and degenerating centrifugal fiber terminals in the pigeon retina. Zeitschrift für Zellforschung 71, 1428.CrossRefGoogle ScholarPubMed
Dowling, J.E. (1987). The Retina. An Approachable Part of the Brain. Cambridge, Massachusetts: Belknap Press.Google Scholar
Ehinger, B. (1967). Adrenergic nerves in the avian eye and ciliary ganglion. Zeitschrift für Zellforschung 82, 577.CrossRefGoogle ScholarPubMed
Foxman, S.G., Wirtschafter, J.D. & Letson, R.D. (1983). Leber's congenital amaurosis and high hyperopia: a discrete entity. Acta XXIV International Congress of Ophthalmology, pp. 5558.Google Scholar
Gordon, R.A. & Donzis, P.B. (1985). Refractive development of the human eye. Archives of Ophthalmology 103, 785789.CrossRefGoogle ScholarPubMed
Gottlieb, M.D., Fugate-Wentzek, L.A. & Wallman, J. (1987). Different visual deprivations produce different ametropias and different eye shapes. Investigative Ophthalmology and Visual Science 28, 12251235.Google ScholarPubMed
Grose, J. & Harding, G. (1990). The development of refractive error and pattern visually evoked potential in pre-term infants. Clinical Vision Sciences 5, 375382.Google Scholar
Guyton, D.L., Greene, P.R. & Scholz, R.T. (1989). Dark-rearing interference with emmetropization in the rhesus monkey. Investigative Ophthalmology and Visual Science 30, 761764.Google ScholarPubMed
Hodos, W. & Kuenzel, W.J. (1984). Retinal-image degradation produces ocular enlargement in chicks. Investigative Ophthalmology and Visual Science 25, 652659.Google ScholarPubMed
Hoyt, C.S., Stone, R.D., Fromer, C. & Billson, F.A. (1981). Monocular axial myopia associated with neonatal eyelid closure in human infants. American Journal of Ophthalmology 91, 197200.CrossRefGoogle ScholarPubMed
Iuvone, P.M., Tigges, M., Fernandes, A. & Tigges, J. (1989). Dopamine synthesis and metabolism in rhesus monkey retina: development, aging, and the effects of monocular visual deprivation. Visual Neuroscience 2, 465471.CrossRefGoogle ScholarPubMed
Iuvone, P.M., Tigges, M., Stone, R.A., Lambert, S. & Laties, A.M. (1991). Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Investigative Ophthalmology and Visual Science (in press).Google Scholar
Nathan, J., Kiely, P.M., Crewther, S.G. & Crewther, D.P. (1985). Disease-associated visual-image degradation and spherical refractive errors in children. American Journal of Optometry and Physiological Optics 62, 680688.CrossRefGoogle ScholarPubMed
Norton, T.T. (1990). Experimental myopia in tree shrews. In 1990 Myopia and The Control of Eye Growth (Ciba Foundation Symposium 155), pp. 178199. Chichester, England: Wiley.Google Scholar
Rabin, J., Van, Sluyters R.C. & Malach, R. (1981). Emmetropization: a vision-dependent phenomenon. Investigative Ophthalmology and Visual Science 20, 561564.Google ScholarPubMed
Raviola, E. & Wiesel, T.N. (1985). An animal model of myopia. The New England Journal of Medicine 312, 16091615.CrossRefGoogle ScholarPubMed
Robb, R.M. (1977). Refractive errors associated with hemangiomas of the eyelids and orbit in infancy. American Journal of Ophthalmology 83, 5258.CrossRefGoogle ScholarPubMed
Stone, R.A., Laties, A.M., Raviola, E. & Wiesel, T.N. (1988). Increase in retinal vasoactive intestinal polypeptide after eyelid fusion in primates. Proceedings of the National Academy of Sciences of the U.S.A. 85, 257260.CrossRefGoogle ScholarPubMed
Stone, R.A., Lin, T., Laties, A.M. & Iuvone, P.M. (1989). Retinal dopamine and form-deprivation myopia. Proceedings of the National Academy of Sciences of the U.S.A. 86, 704706.CrossRefGoogle ScholarPubMed
Stone, R.A., Lin, T., Iuvone, P.M. & Laties, A.M. (1990). Postnatal control of ocular growth: dopaminergic mechanisms. In 1990 Myopia and The Control of Eye Growth (Ciba Foundation Symposium 155), pp. 4562. Chichester, England: Wiley.Google Scholar
Tigges, M., Tigges, J., Fernandes, A., Eggers, H.M. & Gammon, J.A. (1990). Postnatal axial eye elongation in normal and visually deprived rhesus monkeys. Investigative Ophthalmology and Visual Science 31, 3748.Google ScholarPubMed
Troilo, D., Gottlieb, M.D. & Wallman, J. (1987). Visual deprivation causes myopia in chicks with optic nerve section. Current Eye Research 6, 993999.CrossRefGoogle ScholarPubMed
Wallman, J., Adams, J.I. & Trachtman, J.N. (1981). The eyes of young chickens grow toward emmetropia. Investigative Ophthalmology and Visual Science 20, 557561.Google ScholarPubMed
Wallman, J., Gottlieb, M.D., Rajaram, V. & Fugate-Wentzek, L.A. (1987). Local retinal regions control local eye growth and myopia. Science 237, 7377.CrossRefGoogle ScholarPubMed
Wallman, J., Turkel, J. & Trachtman, J. (1978). Extreme myopia produced by modest change in early visual experience. Science 201, 12491251.CrossRefGoogle ScholarPubMed
Wertheim, T. (1894). Ueber die indirekte Sehschärfe. Ztschr. f. Psychol. u. Physiol. d. Sinnesorg. 7, 172.Google Scholar
Wiesel, T.N. & Raviola, E. (1977). Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature 266, 6668.CrossRefGoogle ScholarPubMed
Wildsoet, C.F. & Pettigrew, J.D. (1988a). Kainic acid-induced eye enlargement in chickens: differential effects on anterior and posterior segments. Investigative Ophthalmology and Visual Science 29, 311319.Google ScholarPubMed
Wildsoet, C.F. & Pettigrew, J.D. (1988b). Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: evidence for local control of eye growth. Clinical Vision Science 3, 99107.Google Scholar