Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T21:57:14.308Z Has data issue: false hasContentIssue false

The retinoids of seven species of mantis shrimp

Published online by Cambridge University Press:  02 June 2009

Timothy H. Goldsmith
Affiliation:
Department of Biology, Yale University, New Haven
Thomas W. Cronin
Affiliation:
Department of Biological Sciences, University of Maryland Baltimore County, Catonsville

Abstract

Eyes of stomatopod crustaceans, or mantis shrimps, contain the greatest diversity of visual pigments yet described in any species, with as many as ten or more spectral classes present in a single retina. In this study, the eyes of seven species of mantis shrimp from three superfamilies of stomatopods were examined for their content of retinoids. Only retinal and retinol were found; neither hydroxyretinoids nor dehydroretinoids were detected. The principal isomers were 11 -cis and all-trans. The eyes of most of these species contain stores of 11 -cis retinol, principally as retinyl esters, and in amounts in excess of retinal. Squilla empusa is particularly noteworthy, with over 5000 pmoles of retinol per eye.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bridges, C.D.B. & Alverez, R.A. (1982). Measurement of the vitamin A cycle. In Methods in Enzymology 81, Biomembranes, Part H. Visual Pigments and Purple Membranes, I, ed. Packer, L., pp. 463485. New York: Academic Press.CrossRefGoogle Scholar
Cronin, T.W. (1985). The visual pigment of a stomatopod crustacean, Squilla empusa. Journal of Comparative Physiology A 156, 679–687.CrossRefGoogle Scholar
Cronin, T.W. (1989). Application of intracellular optical techniques to the study of stomatopod crustacean vision. Journal of Comparative Physiology A 164, 737–749.CrossRefGoogle Scholar
Cronin, T.W. (1990). Visual pigments and spectral mechanisms in the Crustacea. In Frontiers in Crustacean Neurobiology, ed. Wiese, K., Kreuz, W.-D., Tautz, J., Reichert, H. & Mulloney, B., pp. 5865. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
Cronin, T.W. & Marshall, N.J. (1989 a). A retina with at least ten spectral types of photoreceptors in a stomatopod crustacean. Nature 339, 137–140.CrossRefGoogle Scholar
Cronin, T.W. & Marshall, N.J. (1989 b). Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. Journal of Comparative Physiology A 166, 267–275.CrossRefGoogle Scholar
Cronin, T.W., Marshall, N.J & Caldwell, R.L. (1993). Photoreceptor spectral diversity in the retinas of squilloid and lysiosquilloid stomatopod crustaceans. Journal of Comparative Physiology A 172, 339–350.CrossRefGoogle Scholar
Deigner, P.S., Law, W.C., Cañada, F.J. & Rando, R.R. (1989). Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science 244, 968–971.CrossRefGoogle ScholarPubMed
Fulton, B.S. & Rando, R.R. (1987). Biosynthesis of ll-cis-retinoids and retinyl esters by bovine pigment epithelium membranes. Biochemistry 26, 7938–7945.CrossRefGoogle ScholarPubMed
Goldsmith, T.H. & Wehner, R. (1977). Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. Journal of General Physiology 70, 453–490.CrossRefGoogle ScholarPubMed
Goldsmith, T.H., Marks, B.C. & Bernard, G.D. (1986). Separation and identification of geometric isomers of 3-hydroxyretinoids and occurrence in the eyes of insects. Vision Research 26, 1763–1769.CrossRefGoogle ScholarPubMed
Groenenduk, G.W.T., DeGrip, W.J. & Daemen, F.J.M. (1979). Identification and characterization of syn and anti-isomers of retinaloximes. Analytical Biochemistry 99, 304–310.CrossRefGoogle Scholar
Hara, T. & Hara, R. (1972). Cephalopod retinochrome. In Handbook of Sensory Physiology, Vol. VII, ed. Dartnall, H.J.A., pp. 720746, Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Lipetz, L.E. & Cronin, T.W. (1988). Application of an invariant spectral form to the visual pigments of crustaceans: Implications regarding the binding of the chromophore. Vision Research 28, 1083–1093.CrossRefGoogle Scholar
Marshall, N.J. (1988). A unique colour and polarization vision system in mantis shrimps. Nature 333, 557–560.CrossRefGoogle ScholarPubMed
Marshall, N.J., Land, M.F., King, C.A. & Cronin, T.W. (1991 a). The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: The detection of polarised light. Philosophical Transactions of the Royal Society B 334, 33–56.Google Scholar
Marshall, N.J., Land, M.F., King, C.A. & Cronin, T.W. (1991 b). The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II. Colour pigments in the eyes of Stomatopod crustaceans: Polychromatic vision by serial and lateral filtering. Philosophical Transactions of the Royal Society B 334, 57–84.Google Scholar
Matsui, S., Seidou, M., Uchiyama, I., Sekiya, N., Hiraki, K., Yoshihyara, K. & Kito, Y. (1988). 4-Hydroxyretinal, a new visual-pigment chromophore found in the bioluminescent squid, Watasenia scintillans. Biochimica et Biophysica Acta 966, 370–374.CrossRefGoogle ScholarPubMed
Motoyama, H., Hamanaka, T., Kito, Y., Morita, H., Guerette, L., Abran, D. & Boucher, F. (1986). Wavelength modulation by molecular environment in visual pigments. Biochimica et Biophysica Acta 861, 9–15.CrossRefGoogle ScholarPubMed
Schiff, H. (1963). Dim light vision in Squilla mantis (L.). American Journal of Physiology 205, 927–940.CrossRefGoogle ScholarPubMed
Schwemer, J. (1983). Pathways of visual-pigment regeneration in fly photoreceptor cells. Biophysics of Structure and Mechanism 9, 287–298.CrossRefGoogle Scholar
Schwemer, J. (1984). Renewal of visual pigment in photoreceptors of the blowfly. Journal of Comparative Physiology A 154, 535–547.CrossRefGoogle Scholar
Schwemer, J. (1986). Turnover of photoreceptor membrane and visual pigment in invertebrates. In The Molecular Mechanism of Photoreception, ed. Stieve, H., pp. 303326. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Schwemer, J. (1988). Cycle of 3-hydroxy retinoids in an insect eye. In Molecular Physiology of Retinal Proteins, ed. Hara, T., pp. 299304. Yamada, Japan: Yamada Science Foundation.Google Scholar
Schwemer, J. (1989). Visual pigments of compound eyes: Structure, photochemistry, and regeneration. In Facets of Vision, ed. Stavenga, D.G. & Hardie, R.C., pp. 112133. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Schwemer, J., Pepe, I.M., Paulsen, R. & Cugnoli, C. (1984). Light-induced trans-cis isomerization of retinal by a protein from honeybee retina. Journal of Comparative Physiology A 154, 549–554.CrossRefGoogle Scholar
Seki, T.R., Hara, R. & Hara, T. (1982). Reconstitution of squid and cattle rhodopsin by the use of metaretinochrome in their respective membranes. Experimental Eye Research 34, 609–621.CrossRefGoogle ScholarPubMed
Smith, W.C. & Goldsmith, T.H. (1990). Phyletic aspects of the distribution of 3-hydroxyretinal in the class Insecta. Journal of Molecular Evolution 30, 72–84.CrossRefGoogle ScholarPubMed
Smith, W.C. & Goldsmith, T.H. (1991 a). The role of retinal photo-isomerase in the visual cycle of the honeybee. Journal of General Physiology 97, 143–165.CrossRefGoogle Scholar
Smith, W.C. & Goldsmith, T.H. (1991 b). Cellular localization of retinal photoisomerase in the compound eye of the honeybee (Apis mellifera). Visual Neuroscience 7, 237–249.CrossRefGoogle Scholar
Smith, W.C, Friedman, M. & Goldsmith, T.H. (1992). Retinoids in the lateral eye of Limulus: Evidence for a retinal photoisomerase. Visual Neuroscience 8, 329–336.CrossRefGoogle ScholarPubMed
Suzuki, T. & Eguchi, E. (1987). A survey of 3-dehydroretinal as a visual-pigment chromophore in various species of crayfish and other freshwater crustaceans. Experientia 43, 1111–1113.CrossRefGoogle Scholar
Suzuki, T., Makino-Tasaka, M. & Eguchi, E. (1984). 3-Dehydroretinal (vitamin A2 aldehyde) in crayfish eye. Vision Research 24, 783–787.CrossRefGoogle ScholarPubMed
Trehan, A., Canñada, F.J. & Rando, R.R. (1990). Inhibitors of retinyl ester formation also prevent the biosynthesis of 11-cis retinol. Biochemistry 29, 309–313.CrossRefGoogle ScholarPubMed
Vogt, K. (1983). Is the fly visual pigment a rhodopsin? Zeitschrift für Naturforschung 38c, 329–333.CrossRefGoogle Scholar
Vogt, K. (1984). The chromophore of the visual pigment of some insect orders. Zeitschrift für Naturforschung 39, 196–197.CrossRefGoogle Scholar
Vogt, K. & Kirschfeld, K. (1984). Chemical identity of the chromophores of fly visual pigment. Naturwissenschaften 71, 211–213.CrossRefGoogle Scholar
Wald, G. & Burg, S.P. (1957). The vitamin A of the lobster. Journal of General Physiology 40, 609–625.CrossRefGoogle ScholarPubMed
Zeiger, J. & Goldsmith, T.H. (1989). Spectral properties of porphyropsin from an invertebrate. Vision Research 5, 519–527.CrossRefGoogle Scholar