Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:43:17.236Z Has data issue: false hasContentIssue false

Retinal input to efferent target amacrine cells in the avian retina

Published online by Cambridge University Press:  23 July 2010

SARAH H. LINDSTROM
Affiliation:
Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, California
NASON AZIZI
Affiliation:
Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, California
CYNTHIA WELLER
Affiliation:
Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, California
MARTIN WILSON*
Affiliation:
Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, California
*
*Address correspondence and reprint requests to: Martin Wilson, Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA 95616. E-mail: mcwilson@ucdavis.edu

Abstract

The bird visual system includes a substantial projection, of unknown function, from a midbrain nucleus to the contralateral retina. Every centrifugal, or efferent, neuron originating in the midbrain nucleus makes synaptic contact with the soma of a single unique amacrine cell, the target cell (TC). By labeling efferent neurons in the midbrain, we have been able to identify their terminals in retinal slices and make patch-clamp recordings from TCs. TCs generate Na+-based action potentials (APs) triggered by spontaneous EPSPs originating from multiple classes of presynaptic neurons. Exogenously applied glutamate elicited inward currents having the mixed pharmacology of NMDA, kainate, and inward rectifying AMPA receptors. Exogenously applied GABA elicited currents entirely suppressed by GABAzine and therefore mediated by GABAA receptors. Immunohistochemistry showed the vesicular glutamate transporter, vGluT2, to be present in the characteristic synaptic boutons of efferent terminals, whereas the GABA synthetic enzyme, GAD, was present in much smaller processes of intrinsic retinal neurons. Extracellular recording showed that exogenously applied GABA was directly excitatory to TCs and, consistent with this, NKCC, the Cl transporter often associated with excitatory GABAergic synapses, was identified in TCs by antibody staining. The presence of excitatory retinal input to TCs implies that TCs are not merely slaves to their midbrain input; instead, their output reflects local retinal activity and descending input from the midbrain.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burnashev, N., Zhou, Z., Neher, E. & Sakmann, B. (1995). Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. Journal of Physiology 485(Pt 2), 403418.Google Scholar
Catsicas, S., Catsicas, M. & Clarke, P.G. (1987). Long-distance intraretinal connections in birds. Nature 326, 186187.CrossRefGoogle ScholarPubMed
Cowan, W.M., Adamson, L. & Powell, T.P. (1961). An experimental study of the avian visual system. Journal of Anatomy 95, 545563.Google Scholar
Cowan, W.M. & Powell, T.P. (1963). Centrifugal fibres in the avian visual system. Proceedings of the Royal Society of London. Series B, Biological Sciences 158, 232252.Google ScholarPubMed
Dmitriev, A.V., Dmitrieva, N.A., Keyser, K.T. & Mangel, S.C. (2007). Multiple functions of cation-chloride cotransporters in the fish retina. Visual Neuroscience 24, 635645.Google Scholar
Drenhaus, U., Morino, P. & Veh, R.W. (2003). On the development of the stratification of the inner plexiform layer in the chick retina. Journal of Comparative Neurology 460, 112.Google Scholar
Fischer, A.J. & Stell, W.K. (1999). Nitric oxide synthase-containing cells in the retina, pigmented epithelium, choroid, and sclera of the chick eye. Journal of Comparative Neurology 405, 114.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Fritzsch, B., Crapon de Caprona, M.D. & Clarke, P.G. (1990). Development of two morphological types of retinopetal fibers in chick embryos, as shown by the diffusion along axons of a carbocyanine dye in the fixed retina. Journal of Comparative Neurology 300, 405421.Google Scholar
Garthwaite, J. & Boulton, C.L. (1995). Nitric oxide signaling in the central nervous system. Annual Review of Physiology 57, 683706.CrossRefGoogle ScholarPubMed
Gerzanich, V., Peng, X., Wang, F., Wells, G., Anand, R., Fletcher, S. & Lindstrom, J. (1995). Comparative pharmacology of epibatidine: A potent agonist for neuronal nicotinic acetylcholine receptors. Molecular Pharmacology 48, 774782.Google ScholarPubMed
Goureau, O., Regnier-Ricard, F., Jonet, L., Jeanny, J.C., Courtois, Y. & Chany-Fournier, F. (1997). Developmental expression of nitric oxide synthase isoform I and III in chick retina. Journal of Neuroscience Research 50, 104113.Google Scholar
Hamassaki-Britto, D.E., Gardino, P.F., Hokoc, J.N., Keyser, K.T., Karten, H.J., Lindstrom, J.M. & Britto, L.R. (1994). Differential development of alpha-bungarotoxin-sensitive and alpha-bungarotoxin-insensitive nicotinic acetylcholine receptors in the chick retina. Journal of Comparative Neurology 347, 161170.Google Scholar
Hayes, B.P. & Holden, A.L. (1983). The distribution of centrifugal terminals in the pigeon retina. Experimental Brain Research 49, 189197.Google Scholar
Hille, B. (2001). Ion Channels of Excitable Membranes (3rd ed.). Sunderland, MA: Sinauer Associates.Google Scholar
Holden, A.L. (1968). The centrifugal system running to the pigeon retina. Journal of Physiology 197, 199219.Google Scholar
Holden, A.L. (1969). Receptive properties of retinal cells and tectal cells in the pigeon. Journal of Physiology 201, 56P57P.Google Scholar
Holden, A.L. (1977). Responses of directional ganglion cells in the pigeon retina. Journal of Physiology 270, 253269.CrossRefGoogle ScholarPubMed
Holden, A.L. (1978). Centrifugal actions on pigeon retinal ganglion cells [proceedings]. Journal of Physiology 282, 8P9P.Google Scholar
Holden, A.L. & Powell, T.P. (1972). The functional organization of the isthmo-optic nucleus in the pigeon. Journal of Physiology 223, 419447.Google Scholar
Hollmann, M., Hartley, M. & Heinemann, S. (1991). Ca2+ permeability of KA-AMPA–gated glutamate receptor channels depends on subunit composition. Science 252, 851853.CrossRefGoogle ScholarPubMed
Jang, I.S., Jeong, H.J. & Akaike, N. (2001). Contribution of the Na-K-Cl cotransporter on GABA(A) receptor-mediated presynaptic depolarization in excitatory nerve terminals. Journal of Neuroscience 21, 59625972.Google Scholar
Kakazu, Y., Akaike, N., Komiyama, S. & Nabekura, J. (1999). Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. Journal of Neuroscience 19, 28432851.CrossRefGoogle ScholarPubMed
Li, B., McKernan, K. & Shen, W. (2008). Spatial and temporal distribution patterns of Na-K-2Cl cotransporter in adult and developing mouse retinas. Visual Neuroscience 25, 109123.Google Scholar
Li, J.L., Xiao, Q., Fu, Y.X. & Wang, S.R. (1998). Centrifugal innervation modulates visual activity of tectal cells in pigeons. Visual Neuroscience 15, 411415.Google Scholar
Lindstrom, S.H., Nacsa, N., Blankenship, T., Fitzgerald, P.G., Weller, C., Vaney, D.I. & Wilson, M. (2009). Distribution and structure of efferent synapses in the chicken retina. Visual Neuroscience 26, 215226.CrossRefGoogle ScholarPubMed
Lytle, C., Xu, J.C., Biemesderfer, D. & Forbush, B. III (1995). Distribution and diversity of Na-K-Cl cotransport proteins: A study with monoclonal antibodies. American Journal of Physiology 269, C1496C1505.Google Scholar
Marty, A. & Llano, I. (2005). Excitatory effects of GABA in established brain networks. Trends in Neuroscience 28, 284289.CrossRefGoogle ScholarPubMed
Marty, S., Wehrle, R., Alvarez-Leefmans, F.J., Gasnier, B. & Sotelo, C. (2002). Postnatal maturation of Na+, K+, 2Cl- cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: An immunocytochemical analysis. European Journal of Neuroscience 15, 233245.CrossRefGoogle Scholar
Masland, R.H. & Ames, A. III (1976). Responses to acetylcholine of ganglion cells in an isolated mammalian retina. Journal of Neurophysiology 39, 12201235.Google Scholar
Maturana, H.R. & Frenk, S. (1965). Synaptic connections of the centrifugal fibers in the pigeon retina. Science 150, 359361.CrossRefGoogle ScholarPubMed
Mayer, M.L., Westbrook, G.L. & Guthrie, P.B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261263.Google Scholar
Miceli, D., Reperant, J., Rio, J.P. & Medina, M. (1995). GABA immunoreactivity in the nucleus isthmo-opticus of the centrifugal visual system in the pigeon: A light and electron microscopic study. Visual Neuroscience 12, 425441.CrossRefGoogle Scholar
Miles, F.A. (1972 a). Centrifugal control of the avian retina. 3. Effects of electrical stimulation of the isthmo-optic tract on the receptive field properties of retinal ganglion cells. Brain Research 48, 115129.Google Scholar
Miles, F.A. (1972 b). Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Research 48, 6592.Google Scholar
Miles, F.A. (1972 c). Centrifugal control of the avian retina. II. Receptive field properties of cells in the isthmo-optic nucleus. Brain Research 48, 93113.Google Scholar
Morgan, I.G., Miethke, P. & Li, Z.K. (1994). Is nitric oxide a transmitter of the centrifugal projection to the avian retina? Neuroscience Letters 168, 57.CrossRefGoogle Scholar
Mosinger, J.L., Yazulla, S. & Studholme, K.M. (1986). GABA-like immunoreactivity in the vertebrate retina: A species comparison. Experimental Eye Research 42, 631644.CrossRefGoogle ScholarPubMed
Nelson, R., von Litzow, A., Kolb, H. & Gouras, P. (1975). Horizontal cells in cat retina with independent dendritic systems. Science 189, 137139.CrossRefGoogle ScholarPubMed
Nickla, D.L., Gottlieb, M.D., Marin, G., Rojas, X., Britto, L.R. & Wallman, J. (1994). The retinal targets of centrifugal neurons and the retinal neurons projecting to the accessory optic system. Visual Neuroscience 11, 401409.CrossRefGoogle Scholar
Paternain, A.V., Morales, M. & Lerma, J. (1995). Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185189.CrossRefGoogle ScholarPubMed
Pearlman, A.L. & Hughes, C.P. (1973). Functional role of efferents to the retina. Transactions of the American Neurological Association 98, 4851.Google Scholar
Pearlman, A.L. & Hughes, C.P. (1976 a). Functional role of efferents to the avian retina. I. Analysis of retinal ganglion cell receptive fields. Journal of Comparative Neurology 166, 111122.Google Scholar
Pearlman, A.L. & Hughes, C.P. (1976 b). Functional role of efferents to the avian retina. II. Effects of reversible cooling of the isthmo-optic nucleus. Journal of Comparative Neurology 166, 123131.Google Scholar
Posada, A. & Clarke, P.G. (1999). Role of nitric oxide in a fast retrograde signal during development. Brain Research Developmental Brain Research 114, 3742.CrossRefGoogle Scholar
Ramón y Cajal, S. (1972). The Structure of the Retina. Springfield, IL: C. C. Thomas.Google Scholar
Ramón y Cajal, S. (1995). Histology of the Nervous System of Man and Vertebrates. New York: Oxford University Press.Google Scholar
Randle, J.C., Guet, T., Bobichon, C., Moreau, C., Curutchet, P., Lambolez, B., de Carvalho, L.P., Cordi, A. & Lepagnol, J.M. (1992). Quinoxaline derivatives: Structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials. Molecular Pharmacology 41, 337345.Google Scholar
Reisert, J., Lai, J., Yau, K.W. & Bradley, J. (2005). Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Neuron 45, 553561.Google Scholar
Rios, H., Lopez-Costa, J.J., Fosser, N.S., Brusco, A. & Saavedra, J.P. (2000). Development of nitric oxide neurons in the chick embryo retina. Brain Research Developmental Brain Research 120, 1725.Google Scholar
Russell, J.M. (2000). Sodium-potassium-chloride cotransport. Physiological Reviews 80, 211276.Google Scholar
Schoepfer, R., Conroy, W.G., Whiting, P., Gore, M. & Lindstrom, J. (1990). Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5, 3548.CrossRefGoogle ScholarPubMed
Sherry, D.M., Wang, M.M., Bates, J. & Frishman, L.J. (2003). Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. Journal of Comparative Neurology 465, 480498.Google Scholar
Spira, A.W., Millar, T.J., Ishimoto, I., Epstein, M.L., Johnson, C.D., Dahl, J.L. & Morgan, I.G. (1987). Localization of choline acetyltransferase-like immunoreactivity in the embryonic chick retina. Journal of Comparative Neurology 260, 526538.CrossRefGoogle ScholarPubMed
Uchiyama, H., Aoki, K., Yonezawa, S., Arimura, F. & Ohno, H. (2004). Retinal target cells of the centrifugal projection from the isthmo-optic nucleus. Journal of Comparative Neurology 476, 146153.CrossRefGoogle ScholarPubMed
Uchiyama, H. & Barlow, R.B. (1994). Centrifugal inputs enhance responses of retinal ganglion cells in the Japanese quail without changing their spatial coding properties. Vision Research 34, 21892194.Google Scholar
Uchiyama, H. & Stell, W.K. (2005). Association amacrine cells of Ramon y Cajal: Rediscovery and reinterpretation. Visual Neuroscience 22, 881891.Google Scholar
Ueno, S., Bracamontes, J., Zorumski, C., Weiss, D.S. & Steinbach, J.H. (1997). Bicuculline and gabazine are allosteric inhibitors of channel opening of the GABAA receptor. Journal of Neuroscience 17, 625634.Google Scholar
Vardi, N., Zhang, L.L., Payne, J.A. & Sterling, P. (2000). Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. Journal of Neuroscience 20, 76577663.Google Scholar
Verdoorn, T.A., Burnashev, N., Monyer, H., Seeburg, P.H. & Sakmann, B. (1991). Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252, 17151718.CrossRefGoogle ScholarPubMed
Wilding, T.J. & Huettner, J.E. (1995). Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Molecular Pharmacology 47, 582587.Google ScholarPubMed
Wulle, I. & Wagner, H.J. (1990). GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates. Journal of Comparative Neurology 296, 173178.Google Scholar
Zhang, L.L., Delpire, E. & Vardi, N. (2007). NKCC1 does not accumulate chloride in developing retinal neurons. Journal of Neurophysiology 98, 266277.CrossRefGoogle Scholar