Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:04:02.470Z Has data issue: false hasContentIssue false

Reciprocal connections between the rabbit suprageniculate pretectal nucleus and the superior colliculus: Tracer study with horseradish peroxidase and fluorogold

Published online by Cambridge University Press:  02 June 2009

C. Lagares
Affiliation:
Department of Morphological Sciences, Neurobiology Group, University of Murcia, Murcia, Spain
M. Caballero-Bleda
Affiliation:
Department of Morphological Sciences, Neurobiology Group, University of Murcia, Murcia, Spain
B. Fernández
Affiliation:
Department of Morphological Sciences, Neurobiology Group, University of Murcia, Murcia, Spain
L. Puelles
Affiliation:
Department of Morphological Sciences, Neurobiology Group, University of Murcia, Murcia, Spain

Abstract

Connections of the rabbit suprageniculate pretectal nucleus (SP) with the superior colliculus were explored by means of retrograde transport of horseradish peroxidase or Fluorogold. Large injections centered in the superficial and intermediate tectal layers resulted in bilateral retrograde transport to the medium-size multipolar neurons of the suprageniculate pretectal nucleus. Horseradish peroxidase was also transported anterogradely into the ipsilateral and contralateral neuropiles of the suprageniculate pretectal nucleus. The labeled cells in SP were dispersed throughout the nucleus, including its dorsal, wedge-shaped, internal portion. Labeling was mainly ipsilateral, and less abundant on the contralateral side.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, B.P.Chalupa, L.M. (1988). Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat. Journal of Comparative Neurology 271, 397418.CrossRefGoogle Scholar
Caballero-Bleda, áNdez B. & Puelles, L. (1991). Acetylcholinesterase and NADH-diaphorase chemoarchitectonic subdivisions in the rabbit medial geniculate body. Journal of Chemical Neuroanatomy 4, 271280.CrossRefGoogle ScholarPubMed
Caballero-Bleda, M., FernáNdez, B. & Puelles, L. (1992). The pretectal complex of the rabbit: Distribution of AChE and NADH-diaphorase activities. Acta Anatomica 144, 716.CrossRefGoogle ScholarPubMed
Benevento, L.A. & Fallon, J.H. (1975). The ascending projections of the superior colliculus in the Rhesus monkey (Macaco mulatta). Journal of Comparative Neurology 160, 339362.CrossRefGoogle Scholar
Geeraedts, L.M.G. (1978). An experimental neuroanatomical study of the primary optic pathways and the descending supraoptic pathways in the rabbit. With an atlas of the normal configuration of the rabbit brain from the central telencephalic areas to the rostral part of the rhombencephalon, in horizontal and sagittal sections. Thesis University of Nijmegen, Netherlands.Google Scholar
Gregory, K.M. & Giolli, R.A. (1987). A 3D Golgi study of the suprageniculate pretectal nucleus in the rabbit. Society for Neuroscience Abstracts 218, 53A.Google Scholar
Gregory, K.M., Giolli, R.A., Blanks, R.H.I. & Torigoe, Y. (1988). Projections of suprageniculate pretectal nucleus in rabbit. Society for Neuroscience Abstracts 14, 991.Google Scholar
Grofová, I., Ottersen, O.P. & Rinvik, E. (1978). Mesencephalic and diencephalic afferents to the superior colliculus and periaqueductal gray substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat. Brain Research 146, 205220.CrossRefGoogle Scholar
Harting, J.K., Casagrande, V.A. & Weber, J.T. (1978). The projection of the primate superior colliculus upon the dorsal lateral geniculate nucleus: Autoradiographic demonstration of interlaminar distribution of tectogeniculate axons. Brain Research 150, 593599.CrossRefGoogle ScholarPubMed
Holstege, G. & Collewlin, H. (1982). The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. Journal of Comparative Neurology 209, 139175.CrossRefGoogle ScholarPubMed
KüHlenbeck, H. & Miller, R. (1942). The pretectal region of the rabbit’s brain. Journal of Comparative Neurology 76, 323365.CrossRefGoogle Scholar
Manning, K.A., Erichsen, J.T. & Evinger, C. (1990). Retrograde transneuronal transport properties of fragment C of tetanus toxin. Neuroscience 34, 251263.CrossRefGoogle ScholarPubMed
Matute, C. & P., Streit (1985). Selective retrograde labeling with D-[3H]-aspartate in afferents to the mammalian superior colliculus. Journal of Comparative Neurology 241, 3449.CrossRefGoogle Scholar
MüNzer, E. & Wiener, H. (1902). Das Zwischen-und Mittelhirn des Kaninchens und die Beziehungen dieser Teile zum übrigen Zentral-nervensystem, mit besonderer Berücksichtigung der Pyramidenbahn und Schleife. Monatschrift für Psychiatrie und Neurologie 12, 241279.CrossRefGoogle Scholar
Paxinos, G. & Watson, C. (1986). The Rat Brain in Stereotaxic Coordinates. 2nd edition. Sydney, Australia: Academic Press.Google Scholar
Rose, J.E. (1942). The thalamus of the sheep: Cellular and fibrous structure and comparison with pig, rabbit, and cat. Journal of Comparative Neurology 77, 469523.CrossRefGoogle Scholar
Scalla, F. (1972). The termination of retinal axons in the pretectal region of mammals. Journal of Comparative Neurology 145, 223258.CrossRefGoogle Scholar
Tarlov, E.C. & Moore, R.Y. (1966). The tecto-thalamic connections in the brain of the rabbit. Journal of Comparative Neurology 126, 403422.CrossRefGoogle ScholarPubMed
Taylor, A.M., Jeffery, G. & Lieberman, A.R. (1986). Subcortical afferent and efferent connections of the superior colliculus in the rat and comparisons between albino and pigmented strains. Experimental Brain Research 62, 131142.CrossRefGoogle ScholarPubMed