Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T16:51:55.820Z Has data issue: false hasContentIssue false

Receptor demise from alteration of glycosylation site in Drosophila opsin: Electrophysiology, microspectrophotometry, and electron microscopy

Published online by Cambridge University Press:  02 June 2009

Gary Brown
Affiliation:
Department of Biology, Saint Louis University, Missouri
De-Mao Chen
Affiliation:
Department of Biology, Saint Louis University, Missouri
J. Scott Christianson
Affiliation:
Mason Institute of Ophthalmology, University of Missouri, Columbia
Ron Lee
Affiliation:
Department of Biology, Saint Louis University, Missouri
William S. Stark
Affiliation:
Department of Biology, Saint Louis University, Missouri

Abstract

In the δAsn20 Drosophila stock, the N-linked glycosylation site of opsin in Rl-6 receptors (Rhl) is absent. We used electroretinography (ERG), microspectrophotometry (MSP), and electron microscopy (EM) to quantify visual cell defects. Positive controls, w9, had wild type Rhl. MSP revealed minimal photopigment in δAsn20 for 6 days posteclosion; w9 had near normal visual pigment. ERG sensitivity and prolonged depolarizing afterpotential (PDA) were compared for δAsn20 and w9. δAsn20's Rl-6 function is decreased 100–fold at eclosion and diminishes until only R7/8 functions at 11 days. What little rhodopsin is routed to the rhabdomere functions. Morphometry showed smaller Rl-6 rhabdomeres in δAsn20 for 8 days posteclosion. Rhabdomeres in w9 were normal. A negative control, ninaE0117, a deletion of the Rhl gene, also has small rhabdomeres. δAsn20 and ninaE0117 lack the extreme rhabdomere elimination of ora (outer rhabdomeres absent), a nonsense mutant interrupting Rhl's coding sequence. δAsn20 and ora have surplus membrane while ninaE0117 does not. Freeze fracture reveals that δAsn20's rhabdomeric P-face particle count is as low as for vitamin A deprivation, consistent with an opsin defect. High particle density, organized into rows, is present in adjacent plasmalemma where surplus membrane accumulates. In summary, δAsn20 interferes with either synthesis, deployment, or maintenance of opsin.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alawi, A.A., Jennings, V., Grossfield, J. & Pak, W.L. (1972). Phototransduction mutants of Drosophila melanogaster. In Visual System, ed. Arden, G.B., pp. 121. New York: Plenum Press.Google Scholar
Britt, S.G., Feiler, R., Kirschfeld, K. & Zuker, C.S. (1993). Spectral tuning of rhodopsin and metarhodopsin in vivo. Neuron 11, 2939.CrossRefGoogle ScholarPubMed
Chen, D.M., Brown, G. & Stark, W.S. (1993). Sensitivity and rhab-domere decreases in heterozygotes of ora, a nonsense mutant allele of ninaE, the Drosophila Rhl opsin gene. Investigative Ophthalmology and Visual Science 34, 808.Google Scholar
Chen, D.M., Christianson, J.S., Brown, G. & Stark, W.S. (1992 a). Receptor demise from alteration of glycosylation site in Drosophila opsin. Investigative Ophthalmology and Visual Science 33, 739.Google Scholar
Chen, D.M., Christianson, J.S., Sapp, R.J. & Stark, W.S. (1992 b). Visual receptor cycle in normal and period mutant Drosophila: Microspectrophotometry, electrophysiology, and ultrastructural morphometry. Visual Neuroscience 9, 125135.CrossRefGoogle ScholarPubMed
Colley, N.J., Baker, E.K., Stamnes, M.A. & Zuker, C.S. (1991). The cyclophilin homolog ninaA is required in the secretory pathway. Cell 67, 255263.CrossRefGoogle ScholarPubMed
deCouet, H.G. & Tanimura, T. (1987). Monoclonal antibodies provide evidence that rhodopsin in the outer rhabdomeres of Drosophila melanogaster is not glycosylated. European Journal of Cell Biology 44, 5056.Google Scholar
Dryja, T.P., McGee, T.L., Reichel, E., Hahn, L.B., Cowley, G.S., Yandell, D.W., Sandbero, M.A. & Berson, E.L. (1990). A point mutation of the opsin gene in one form of retinitis pigmentosa. Nature (London) 343, 364366.CrossRefGoogle ScholarPubMed
Elbein, A.D. (1987). Inhibitors of the biosynthesis and processing. Annual Review of Biochemistry 56, 497534.CrossRefGoogle ScholarPubMed
Fliesler, S.J. & Basinger, S.F. (1985). Tunicamycin blocks the incorporation of opsin into retinal rod outer segment membranes. Proceedings of the National Academy of Sciences of the U.S.A. 82, 11161120.CrossRefGoogle ScholarPubMed
Fliesler, S.J., Rapp, L.M. & Hollyfield, J.G. (1984). Photoreceptor-specific degeneration caused by tunicamycin. Nature 311, 575577.CrossRefGoogle ScholarPubMed
Fliesler, S.J., Rayborn, M.E. & Hollyfield, J.G. (1985). Membrane morphogenesis in retinal rod outer segments: Inhibition by tunicamycin. Journal of Cell Biology 100, 574587.CrossRefGoogle ScholarPubMed
Harris, W.A. & Stark, W.S. (1977). Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. Journal of General Physiology 69, 261291.CrossRefGoogle ScholarPubMed
Harris, W.A., Stark, W.S. & Walker, J.A. (1976). Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. Journal of Physiology (London) 256, 415439.Google ScholarPubMed
Huber, A., Smith, D.P., Zuker, C.S. & Paulsen, R. (1990). Opsin of Calliphora photoreceptors Rl-6: homology with Drosophila Rhl and post-translational processing. Journal of Biological Chemistry 265, 1790617910.CrossRefGoogle Scholar
Katz, M.L., Gao, C.L., Kutryb, M., Norberg, N., White, R.H. & Stark, W.S. (1991). Maintenance of opsin density in photoreceptor outer segments of retinoid-deprived rats. Investigative Ophthalmology and Visual Science 32, 19681980.Google ScholarPubMed
Krishna, Prasad A.V., Plantner, J.J. & Kean, E.L. (1992). Effect of enzymatic deglycosylation on the regenerability of bovine rhodopsin. Experimental Eye Research 54, 913920.Google Scholar
Leonard, D.S., Bowman, V.D., Ready, D.F. & Pak, W.L. (1992). Degeneration of photoreceptors in rhodopsin mutants of Drosophila. Journal of Neurobiology 23, 605626.CrossRefGoogle ScholarPubMed
O'Tousa, J.E. (1992). Requirement of N-linked glycosylation site in Drosophila rhodopsin. Visual Neuroscience 8, 385390.CrossRefGoogle ScholarPubMed
O'Tousa, J.E., Baehr, W., Martin, R.L., Jirsh, J., Pak, W.L. & Applebury, M.L. (1985). The Drosophila ninaE gene encodes an opsin. Cell 40, 839850.CrossRefGoogle ScholarPubMed
O'Tousa, J.E., Leonard, D.S. & Pak, W.L. (1989). Morphological defects in oraJK84 photoreceptors caused by mutation in Rl-6 opsin gene in Drosophila. Journal of Neurogenetics 6, 4152.CrossRefGoogle Scholar
Ozaki, K., Nagatani, H., Ozaki, M. & Tokunaga, F. (1993). Maturation of major Drosophila rhodopsin, ninaE, requires chromophore 3–hydroxyretinal. Neuron 10, 11131119.CrossRefGoogle ScholarPubMed
Rosenfeld, P.J., Cowley, G.S., McGee, T.L., Sandberg, M.A., Berson, E.L. & Dryja, T.P. (1992). A Null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nature Genetics 1, 209213.CrossRefGoogle Scholar
Sapp, R.J., Christianson, J.S., Maier, L., Studer, K. & Stark, W.S. (1991). Carotenoid replacement therapy in Drosophila: Recovery–of membrane, opsin and rhodopsin. Experimental Eye Research 53, 7179.CrossRefGoogle Scholar
Shaw, S.R. (1981). Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In Neurons Without Impulses. Society of Experimental Biology Seminar Series 6, ed. Roberts, A. & Bush, B.M.H., pp. 61116. Cambridge: University Press.Google Scholar
Stamnes, M.A., Rutherford, S.L. & Zuker, C.S. (1992). Cyclophilins: A new family of proteins involved in intracellular folding. Trends in Cell Biology 2, 272276.CrossRefGoogle ScholarPubMed
Stark, W.S., Brown, G., Hombs, D., Christianson, J.S. & White, R. (1992). Carotenoid replacement in Drosophila: Freeze-fracture. Society for Neuroscience Abstracts 18, 1329.Google Scholar
Stark, W.S. & Carlson, S.D. (1983). Ultrastructure of the compound eye and first optic neuropile of the photoreceptor mutant oraJK84 of Drosophila. Cell and Tissue Research 233, 305317.CrossRefGoogle ScholarPubMed
Stark, W.S., Christianson, J.S., Maier, L. & Chen, D.M. (1991). Inherited and environmentally induced retinal degenerations in Drosophila. In Retinal Degenerations, ed. Anderson, R.E., Hollyfield, J.G. & la Vail, M.M., pp. 6175. New York: CRC Press, Inc.Google Scholar
Stark, W.S. & Clark, A.W. (1973). Visual synaptic structure in normal and blind Drosophila. Drosophila Information Service 50, 105106.Google Scholar
Stark, W.S., Hartman, C.R., Sapp, R.J., Carlson, S.D., Claude, P. & Bhattacharyya, A. (1987). Vitamin A replacement therapy in Drosophila. Drosophila Information Service 1987, 136137.Google Scholar
Stark, W.S., Ivanyshyn, A.M. & Greenberg, R.M. (1977). Sensitivity and photopigments of Rl-6, a two-peaked photoreceptor, in Drosophila, Calliphora and Musca. Journal Comparative Physiology 121, 289305.CrossRefGoogle Scholar
Stark, W.S., Ivanyshyn, A.M. & Hu, K.G. (1976). Spectral sensitivities and photopigments in adaptation of fly visual receptors. Natur-wissenschaften 63, 513518.CrossRefGoogle ScholarPubMed
Stark, W.S. & Johnson, M.A. (1980). Microspectrophotometry of Drosophila visual pigments: Determinations of conversion efficiency in Rl-6 receptors. Journal of Comparative Physiology 140, 275286.CrossRefGoogle Scholar
Stark, W.S. & Sapp, R. (1988). Eye color pigment granules in wild-type and mutant Drosophila melanogaster. Canadian Journal of Zoology 66, 13011308.CrossRefGoogle Scholar
Stark, W.S. & Sapp, R.J. (1987). Ultrastructure of the retina of Drosophila melanogaster. The mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). Journal of Neurogenetics 4, 227240.Google ScholarPubMed
Stark, W.S. & Sapp, R.J. (1989). Retinal degeneration and photoreceptor maintenance in Drosophila: rdgB and its interaction with other mutants. In Inherited and Environmentally Induced Retinal Degenerations, ed. la Vail, M.M., Anderson, R.E. & Hollyfteld, J.G., pp. 467489. New York: Liss.Google Scholar
Stark, W.S., Sapp, R.J. & Carlson, S.D. (1989). Photoreceptor maintenance and degeneration in the norpA (no receptor potential-A) mutant of Drosophila melanogaster. Journal of Neurogenetics 5, 4959.CrossRefGoogle ScholarPubMed
Stark, W.S., Schilly, D., Christianson, J.S., Bone, R.A. & Landrum, J.T. (1990). Photoreceptor-specific efficiencies of β-carotene, zea-xanthin and lutein for photopigment formation deduced from receptor mutant Drosophila melanogaster. Journal of Comparative Physiology 166, 429436.Google ScholarPubMed
Stark, W.S. & Wasserman, G.S. (1972). Transient and receptor potentials in the electroretinogram of Drosophila. Vision Research 12, 17711775.CrossRefGoogle ScholarPubMed
Stark, W.S. & Zitzmann, W.G. (1976). Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation in Drosophila. Journal of Comparative Physiology 105, 1527.CrossRefGoogle Scholar
Washburn, T. & O'Tousa, J.E. (1992). Nonsense suppression of the major rhodopsin gene in Drosophila. Genetics 130, 585595.CrossRefGoogle Scholar
Zinkl, G., Maier, L., Studer, K., Sapp, R., Chen, D.M. & Stark, W.S. (1990). Microphotometric, ultrastructural and electrophysiological analyses of light-dependent processes on visual receptors in white-eyed wild-type and norpA (no receptor potential) mutant Drosophila. Visual Neuroscience 5, 429439.CrossRefGoogle ScholarPubMed