Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T00:26:22.078Z Has data issue: false hasContentIssue false

A psychophysically motivated model for two-dimensional motion perception

Published online by Cambridge University Press:  02 June 2009

Hugh R. Wilson
Affiliation:
Visual Sciences Center, University of Chicago, Chicago
Vincent P. Ferrera
Affiliation:
Visual Sciences Center, University of Chicago, Chicago
Christopher Yo
Affiliation:
Visual Sciences Center, University of Chicago, Chicago

Abstract

A quantitative model is developed to predict the perceived direction of moving two-dimensional patterns. The model incorporates both a simple motion energy pathway and a “texture boundary motion” pathway that incorporates response squaring before the extraction of motion energy. These pathways correspond to Fourier and non-Fourier motion pathways and are hypothesized to reflect processing in the VI-MT and V1-V2-MT pathway, respectively. A cosine-weighted sum of these pathways followed by competitive feedback inhibition accurately predicts the perceived direction for patterns composed of two cosine gratings at different orientations (“plaids”). The model also predicts direction discrimination, differences between foveal and peripheral viewing, changes in perceived direction with exposure duration, motion masking, and motion transparency.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.CrossRefGoogle ScholarPubMed
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284299.CrossRefGoogle ScholarPubMed
Albrecht, D.G. & Geisler, W.S. (1991). Motion selectivity and the contrast response function of simple cells in the visual cortex. Visual Neuroscience 7, 531546.CrossRefGoogle ScholarPubMed
Albrecht, D.G. & Hamilton, D.B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology 48, 217237.CrossRefGoogle ScholarPubMed
Albright, T.D., Desimone, R. & Gross, C.G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology 51, 1631.CrossRefGoogle ScholarPubMed
Anstis, S.M. & Mather, G. (1985). Effects of luminance and contrast on direction of ambiguous apparent motion. Perception 14, 167179.CrossRefGoogle ScholarPubMed
Bergen, J.R. & Landy, M.S. (1991). Computational modeling of visual texture segregation. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 253271. MIT Press.Google Scholar
Bergen, J.R. & Wilson, H.R. (1985). Prediction of flicker sensitivities from temporal threepulse data. Vision Research 25, 577582.CrossRefGoogle ScholarPubMed
Chubb, C. & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America A 5, 19862007.CrossRefGoogle ScholarPubMed
Chubb, C. & Sperling, G. (1989). Two motion perception mechanisms revealed through distancedriven reversal of apparent motion. Proceedings of the National Academy of Sciences of the U.S.A. 86, 29852989.CrossRefGoogle ScholarPubMed
Cormack, R., Blake, E. & Hiris, E. (1992). Misdirected visual motion in the peripheral visual field. Vision Research 32, 7380.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Badcock, D.R. (1985). Separate detectors for simple and complex grating patterns? Vision Research 25, 18691878.CrossRefGoogle ScholarPubMed
Derrington, A. & Suero, M. (1991). Motion of complex patterns is computed from the perceived motions of their components. Vision Research 31, 139149.CrossRefGoogle ScholarPubMed
Deyoe, E.A. & Vanessen, D.C. (1985). Segregation of efferent connec tions and receptive field properties in visual area V2 of the macaque. Nature 317, 5861.CrossRefGoogle Scholar
Emerson, R.C., Bergen, J.R. & Adelson, E.H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research 32, 203218.CrossRefGoogle ScholarPubMed
Feldman, J.A. & Ballard, D.H. (1982). Connectionist models and their properties. Cognitive Science 6, 205254.CrossRefGoogle Scholar
Felleman, D.J. & Vanessen, D.C. (1987). Receptive field properties of neurons in area V3 o f macaque monkey extrastriate cortex. Journal of Neurophysiology 57, 889920.CrossRefGoogle Scholar
Ferrera, V.P. & Wilson, H.R. (1987). Direction Specific Masking And The Analysis Of Motion In Two Dimensions. Vision Research 27, 17831796.CrossRefGoogle ScholarPubMed
Ferrera, V.P. & Wilson, H.R. (1990). Perceived direction of moving two-dimensional patterns. Vision Research 30, 273287.CrossRefGoogle ScholarPubMed
Ferrera, V.P. & Wilson, H.R. (1991). Perceived speed of moving twodimensional patterns. Vision Research 31, 877893.CrossRefGoogle ScholarPubMed
Graham, N. (1991). Complex channels, early local nonlinearities, and normalization in texture segregation. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 273290. Cambridge, Massachusetts: MIT Press.Google Scholar
Grossberg, S. (1991). Why do parallel cortical systems exist for the perception of static form and moving form? Perception and Psychophysics 49, 117141.CrossRefGoogle ScholarPubMed
Heeger, D.H. (1987). Model for the extraction of image flow. Journal of the Optical Society of America A 4, 14551471.CrossRefGoogle ScholarPubMed
Heeger, D.J. (1991). Nonlinear model of neural responses in cat visual cortex. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 119133. Cambridge, Massachusetts: MIT Press.Google Scholar
Hennwg, G.B., Hertz, B.G. & Broadbent, D.E. (1975). Some exper iments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency. Vision Research 15, 887897.Google Scholar
Hildreth, E.G. (1984). The Measurement of Visual Motion. Cambridge, Massachusetts: MIT Press.Google Scholar
Krubitzer, L.A. & Kaas, J.H. (1989). Cortical integration of parallel pathways in the visual system of primates. Brain Research 478, 161165.CrossRefGoogle ScholarPubMed
Krubitzer, L. & Kaas, J. (1990). Convergence of processing channels in the extrastriate cortex of monkeys. Visual Neuroscience 5, 609613.CrossRefGoogle ScholarPubMed
Landy, M.S. & Bergen, J.R. (1991). Texture segregation and orienta tion gradient. Vision Research 31, 679691.CrossRefGoogle Scholar
Marr, D. (1982). Vision: A Computational Investigation into the Hu man Representation and Processing of Visual Information. San Francisco, California: W.H. Freeman.Google Scholar
Maunsell, J.H.R. & Newsome, W.T. (1987). Visual processing in mon key extrastriate cortex. Annual Review of Neuroscience 10, 363401.CrossRefGoogle Scholar
Maunsell, J.H.R., Nealey, T.A. & Depriest, D.D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. Journal of Neu roscience 10, 33233334.CrossRefGoogle ScholarPubMed
Merigan, W.H., Pasternak, T., Polashenski, W. & Maunsell, J.H.R. (1991). Permanent deficits in speed discrimination after MT/MST lesions in a macaque monkey. Investigative Ophthalmol ogy and Visual Science (Suppl.) 32, 824.Google Scholar
Movshon, J.A. (1975). The velocity tuning of single units in cat striate cortex. Journal of Physiology 249, 445468.CrossRefGoogle ScholarPubMed
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1986). The analysis of moving visual patterns. In Pattern Recognition Mechanisms, ed. Chagas, C., Gattass, R. & Gross, C., pp. 117151. New York: Springer-Verlag.Google Scholar
Nawrot, M. & Sekuler, R. (1990). Assimilation and contrast in mo tion perception: Explorations in Cooperativity. Vision Research 30, 14391451.CrossRefGoogle Scholar
Newsome, W.T., Wurtz, R.H., Dursteler, M.R. & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5, 825840.CrossRefGoogle ScholarPubMed
Orban, G.A., Kennedy, H. & Maes, H. (1981). Response to movement of neurons in areas 17 and 18 of the cat: Velocity sensitivity. Journal of Neurophysiology 45, 10431058.CrossRefGoogle ScholarPubMed
Pantle, A. & Picciano, L. (1976). A multistable movement display: Evidence for two separate motion systems in human vision. Science 193, 500502.CrossRefGoogle ScholarPubMed
Pasternak, T., Maunsell, J.H.R., Polashenski, W. & Merigan, W.H. (1991). Deficits in global motion perception after MT/MST lesions in a macaque. Investigative Ophthalmology and Visual Science (Suppl.) 32, 824.Google Scholar
Perrone, J.A. (1990). Simple technique for optical flow estimation. Journal of the Optical Society of America A 7, 264278.CrossRefGoogle Scholar
Philips, G.C. & Wilson, H.R. (1984). Orientation bandwidths of spa tial mechanisms measured by masking. Journal of the Optical So ciety of America A 1, 226232.CrossRefGoogle Scholar
Ramachandran, V.S. & Inada, V. (1985). Spatial phase and frequency in motion capture of random-dot patterns. Spatial Vision 1, 5767.Google ScholarPubMed
Ramachandran, V.S., Inada, V. & Kiama, G. (1986). Perception of illusory occlusion in apparent motion. Vision Research 26, 17411749.CrossRefGoogle ScholarPubMed
Ramachandran, V.S. & Cavanagh, P. (1987). Motion capture anisotropy. Vision Research 27, 97106.CrossRefGoogle ScholarPubMed
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In Sensory Communication, ed. Rosenblith, W.A., pp. 303317. New York: Wiley.Google Scholar
Riggs, L.A. & Day, R.H. (1980). Visual aftereffects derived from in spection of orthogonally moving patterns. Science 208, 416418.CrossRefGoogle Scholar
Rodman, H.R. & Albright, T.D. (1989). Single unit analysis of pat ternmotion selective properties in the middle temporal visual area (MT). Experimental Brain Research 75, 5364.CrossRefGoogle Scholar
Salzman, CD., Britten, K.H. & Newsome, W.T. (1990). Cortical microstimulation influences perceptual judgments of motion direction. Nature 346. 174177.CrossRefGoogle Scholar
Schouten, J.F. (1967). Subjective stroboscopy and a model of visual movement detectors. In Models for the Perception of Speech and Visual Form, ed. Wathen-Dunn, W., pp. 4455. Cambridge, Massachusetts: MIT Press.Google Scholar
Snowden, R.J., Treue, S., Erickson, R.G. & Andersen, R.A. (1991). The response of area MT and VI neurons to transparent motion. Journal of Neuroscience 11, 27682785.CrossRefGoogle Scholar
Stone, L.S., Watson, A.B. & Mulligan, J.B. (1990). Effect of contrast on the perceived direction of a moving plaid. Vision Research 30, 10491067.CrossRefGoogle ScholarPubMed
Turano, K. & Pantle, A. (1989). On the mechanism that encodes the movement of contrast variations: Velocity discrimination. Vision Re search 29, 207221.CrossRefGoogle ScholarPubMed
Turano, K. (1991). Evidence for a common motion mechanism of lu minance and contrast modulated patterns: Selective adaptation. Perception 20, 455466.CrossRefGoogle Scholar
Vanessen, D.C. (1985). Functional organization of primate visual cortex. In Cerebral Cortex, vol. 3, ed. Peters, A. & Jones, E.G., pp. 259329. New York: Plenum.Google Scholar
Vansanten, J.P.H. & Sperling, G. (1984). Temporal covariance model of human motion perception. Journal of the Optical Society of America A 1, 451473.CrossRefGoogle Scholar
Von Der Heydt, R., Peterhans, E. & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science 224, 12601262.CrossRefGoogle ScholarPubMed
Von Der Heydt, R. & Peterhans, E. (1989). Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. Journal of Neuroscience 9, 17311748.CrossRefGoogle ScholarPubMed
Wallach, H. (1935). Uber visuell wahrgenommene bewegungsrichtung. Psychologische Forschung 20, 325380.CrossRefGoogle Scholar
Williams, D., Phillips, G. & Sekuler, R. (1986). Hysteresis in the per ception of motion direction as evidence for neural cooperativity. Nature, 324, 253255.CrossRefGoogle Scholar
Williams, D. & Phillips, G. (1987). Cooperative phenomena in the per ception of motion direction. Journal of the Optical Society of America A 4, 878885.CrossRefGoogle Scholar
Wilson, H.R. & Cowan, J.D. (1972). Excitatory and inhibitory inter actions in localized populations of modelneurons. Biophysical Journal 12, 124.CrossRefGoogle Scholar
Wilson, H.R. & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 5580.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1977). Hysteresis in binocular grating perception: Contrast effects. Vision Research 17, 843851.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1980a). Spatiotemporal characterization of a transient mechanism in the human visual system. Vision Research 20, 443452.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1980b). A transducer function for threshold and suprathreshold human vision. Biological Cybernetics 38, 171178.CrossRefGoogle ScholarPubMed
Wilson, H.R., McFarlane, D.K. & Phillips, G.C. (1983). Spatial fre quency tuning of orientation selective units estimated by oblique masking. Vision Research 23, 873882.CrossRefGoogle Scholar
Wilson, H.R. & Gelb, D.J. (1984). Modified line element theory for spatial frequency and width discrimination. Journal of the Optical Society of America A 1, 124131.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1985). A model for direction selectivity in threshold mo tion perception. Biological Cybernetics 51, 213222.CrossRefGoogle Scholar
Wilson, H.R. (1990). Psychophysics of contrast gain control. Investi gative Ophthalmology and Visual Science (Suppl.) 31, 430.Google Scholar
Wilson, H.R. (1991). Psychophysical models of spatial vision and hyperacuity. In Spatial Form Vision, ed. Regan, D., pp. 6486. New York: Macmillan.Google Scholar
Wilson, H.R. & Richards, W.A. (1992). Curvature and separation dis crimination at texture boundaries (submitted for publication).CrossRefGoogle Scholar
Wilson, H.R. & Mast, R. (1992). Illusory motion of texture bound aries. Vision Research (in press).Google Scholar
Yo, C. & Wilson, H.R. (1992u). Perceived direction of moving twodimensional patterns depends on duration, contrast, and eccentricity. Vision Research 32, 135147.CrossRefGoogle ScholarPubMed
Yo, C. & Wilson, H.R. (1992b). Moving 2-D patterns capture the perceived direction of both lower and higher spatial frequencies. Vision Research (in press).CrossRefGoogle Scholar