Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:17:40.083Z Has data issue: false hasContentIssue false

Pattern of ocular dominance columns in human striate cortex in strabismic amblyopia

Published online by Cambridge University Press:  02 June 2009

Jonathan C. Horton
Affiliation:
Beckman Vision Center, University of California, San Francisco, San Francisco
Davina R. Hocking
Affiliation:
Beckman Vision Center, University of California, San Francisco, San Francisco

Abstract

Previous experiments in animals have shown that early unilateral eyelid suture, a model of amblyopia induced by cataract, causes shrinkage of ocular dominance columns serving the deprived eye in the striate cortex. It is unknown whether the ocular dominance columns are affected in amblyopia produced by strabismus. We examined specimens of striate cortex obtained postmortem from a 79-year-old woman with a history of amblyopia in her left eye (20/800) since age 2 from accommodative esotropia. Four years prior to her death, she suffered an ischemic infarct of the left optic disc. This injury to the left optic disc made it possible to label the ocular dominance columns using cytochrome oxidase histochemistry. The pattern of ocular dominance columns was reconstructed throughout most of the right striate cortex. No shrinkage of columns was found. In the left cortex only half the column mosaic was labelled, because the patient had some residual vision in the temporal retina of her left eye. The columns within the labelled portion of the overall mosaic appeared normal. These findings indicate that shrinkage of ocular dominance columns does not occur in humans with amblyopia caused by accommodative esotropia. The ocular dominance columns are probably no longer susceptible to shrinkage at the age when most children with this condition begin to develop amblyopia.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, F.H., Grigg, P. & Von Noorden, G.K. (1974). Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Research 66, 185208.CrossRefGoogle Scholar
Crawford, M.L.J. & Von Noorden, G.K. (1979). The effects of short-term experimental strabismus on the visual system in Macaca mulatta. Investigative Ophthalmology and Visual Science 18, 496505.Google ScholarPubMed
Hendrickson, A.E., Movshon, J.A., Eggers, H.M., Gizzi, M.S., Boothe, R.G. & Kiorpes, L. (1987). Effects of early unilateral blur on the macaque's visual system. II. Anatomical observations. Journal of Neuroscience 1, 13271339.CrossRefGoogle Scholar
Hocking, D.R. & Horton, J.C. (1996). Pronounced intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. Society for Neuroscience Abstracts 22.Google Scholar
Holmes, G. (1945). The organization of the visual cortex in man. Proceedings of the Royal Society B (London) 132, 348361.Google Scholar
Horton, J.C. (1984). Cytochrome oxidase patches: A new cytoarchi-tectonic feature of monkey visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 199253.Google ScholarPubMed
Horton, J.C. & Hedley-Whyte, T. (1984). Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 255272.Google ScholarPubMed
Horton, J.C., Dagi, L.R., McCrane, E.P. & De Monasterio, P.M. (1990). Arrangement of ocular dominance columns in human visual cortex. Archives of Ophthalmology 108, 10251031.CrossRefGoogle ScholarPubMed
Horton, J.C. & Hoyt, W.F. (1991). The representation of the visual field in human striate cortex. Archives of Ophthalmology 109, 816824.CrossRefGoogle ScholarPubMed
Horton, J.C. & Stryker, M.P. (1993). Amblyopia induced by aniso-metropia without shrinkage of ocular dominance columns in human striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 90, 54945498.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology 28, 10601072.CrossRefGoogle ScholarPubMed
Hubel, D.H., Wiesel, T.N. & LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society B (London) 278, 377409.Google ScholarPubMed
Inouye, T. (1909). Die Sehstorungen bei Schussverlelzungen der kortikalen Sehsphare. Leipzig: W. Engelmann.Google Scholar
Katz, B. & Spencer, W.H. (1993). Hyperopia as a risk factor for nonarteritic anterior ischemic optic neuropathy. American Journal of Ophthalmology 116, 754758.CrossRefGoogle ScholarPubMed
Kiorpes, L. & Boothe, R.G. (1981). Naturally occurring strabismus in monkeys (Macaca nemestrina). Investigative Ophthalmology and Visual Science 20, 257263.Google ScholarPubMed
LeVay, S., Hubel, D.H. & Wiesel, T.N. (1975). The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. Journal of Comparative Neurology 159, 559576.CrossRefGoogle ScholarPubMed
LeVay, S., Wiesel, T.N. & Hubel, D.H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology 191, 151.CrossRefGoogle ScholarPubMed
LeVay, S., Connolly, M., Houde, J. & Van Essen, D.C. (1985). The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. Journal of Neuroscience 5, 486501.CrossRefGoogle ScholarPubMed
Löwel, S. (1994). Ocular dominance column development: Strabismus changes the spacing of adjacent columns in cat visual cortex. Journal of Neuroscience 14, 74517468.CrossRefGoogle ScholarPubMed
Parks, M.M. (1958). Abnormal accommodative convergence in squint. Archives of Ophthalmology 59, 364380.CrossRefGoogle ScholarPubMed
Shatz, C.J. & Stryker, M.P. (1978). Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. Journal of Physiology 281, 267283.CrossRefGoogle ScholarPubMed
Stensaas, S.S., Eddington, D.K. & Dobelle, W.H. (1974). The topography and variability of the primary visual cortex in man. Journal of Neurosurgery 40, 747755.CrossRefGoogle ScholarPubMed
Swindale, N.V., Vital-Durand, F. & Blakemore, C. (1981). Recovery from monocular deprivation in the monkey. III. Reversal of anatomical effects in the visual cortex. Proceedings of the Royal Society B (London) 213, 435450.Google ScholarPubMed
Von Noorden, G.K. (1990). Binocular Vision and Ocular Motility. St. Louis, Missouri: The C.V. Mosby Company.Google Scholar
Wiesel, T.N. & Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology 26, 10031017.CrossRefGoogle ScholarPubMed
Wiesel, T.N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature 299, 583591.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated kittens demonstrable with cytochrome oxidase histochemistry. Brain Research 171, 1128.CrossRefGoogle ScholarPubMed