Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T19:07:28.076Z Has data issue: false hasContentIssue false

A new perceptual problem: The amodal completion of color

Published online by Cambridge University Press:  03 July 2008

BAINGIO PINNA*
Affiliation:
Dipartimento di Scienze dei Linguaggi, University of Sassari, Italy
*
Address correspondence and reprint requests to: Baingio Pinna, Facoltà di Lingue e Letterature Straniere, Dipartimento di Scienze dei Linguaggi, University of Sassari, via Roma 151, I-07100 Sassari, Italy. E-mail: baingio@uniss.it

Abstract

Amodal completion is the most common form of visual completion occurring when portions of an object are hidden, due to their occlusion behind another object (Michotte, 1951). Just as a shape is completed amodally behind another occluding shape, so is a color behind another occluding color or behind a lighting: a bright light reflected by a three-dimensional object. Four possible phenomenal combinations related to the amodal completion of color are shown: amodal or modal coloration or discoloration. Purposes of four experiments were: (1) to demonstrate the amodal completion of color under different stimulus conditions and under chromatic and achromatic conditions and (2) to extract the general principles ruling the amodal completion of color: “which, among many, is the color that completes amodally?” and, consequently, “which is the region of an object that determines its color?” The results showed the effectiveness of the amodal completion of color and that chromatic and achromatic conditions reveal different results. Four general principles of the amodal completion of color, useful to understand the more general problem of phenomenal organization of color, are suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baylis, G.C. & Driver, J. (2001). Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal. Nature Neuroscience 4, 937942.CrossRefGoogle Scholar
Friedman, H.S., Zhou, H. & von der Heydt, R. (2003). The coding of uniform color figures in monkey visual cortex. Journal of Physiology (London) 54, 593613.CrossRefGoogle Scholar
Grossberg, S. (1994). 3-D vision and figure-ground separation by visual cortex. Perception & Psychophysics 55, 48120.CrossRefGoogle ScholarPubMed
Grossberg, S. (1997). Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. Psychological Review 104, 618658.CrossRefGoogle ScholarPubMed
Kanizsa, G. (1985). Seeing and Thinking. Acta Psycologica 59, 2333.CrossRefGoogle ScholarPubMed
Kanizsa, G. (1991). Vedere e Pensare. Bologna: Il Mulino.Google Scholar
Kourtzi, Z. & Kanwisher, N. (2001). Representation of perceived object shape by the human lateral occipital complex. Science 293, 15061509.CrossRefGoogle ScholarPubMed
Michotte, A. (1951). Une nouvelle énigme de la psychologie de la perception: Le “donné amodal” dans l'expérience. Stockholm: International Congress of Psychology.Google Scholar
Michotte, A., Thinès, G. & Crabbé, G. (1964). Les compléments amodaux des structures perceptives. In Michotte's Experimental Phenomenology of Perception, ed. Thinès, G., Costall, A. & Butterworth, G.Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Pinna, B. (2005). The role of Gestalt principle of similarity in the watercolor illusion. Spatial Vision 21, 18.Google Scholar
Pinna, B. (2006). The Discoloration Illusion. Visual Neuroscience 23, 583590.CrossRefGoogle ScholarPubMed
Pinna, B. (2008). Watercolor illusion. Scholarpedia 3, 5352.CrossRefGoogle Scholar
Pinna, B., Brelstaff, G. & Spillmann, L. (2001). Surface color from boundaries: A new ‘watercolor’ illusion. Vision Research 41, 26692676.CrossRefGoogle ScholarPubMed
Pinna, B. & Grossberg, S. (2005). The watercolor illusion and neon color spreading: A unified analysis of new cases and neural mechanisms. Journal of the Optical Society of America A 22, 115.CrossRefGoogle ScholarPubMed
Pinna, B. & Reeves, A. (2006). Lighting, backlighting and watercolor illusions and the laws of figurality. Spatial Vision 19, 341373.Google ScholarPubMed
Pinna, B., Werner, J.S. & Spillmann, L. (2003). The watercolor effect: A new principle of grouping and figure-ground organization. Vision Research 43, 4352.CrossRefGoogle ScholarPubMed
Rubin, E. (1921). Visuell wahrgenommene Figuren. Kobenhavn: Gyldendalske Boghandel.Google Scholar
Spillmann, L., Pinna, B. & Werner, J.S. (2004). Form-from-watercolour in perception and old maps. In Seeing Spatial Form, Jenkin, M.R.M. & Harris, L.R.Oxford: Oxford University Press.Google Scholar
von der Heydt, R. & Pierson, R. (2006). Dissociation of color and figure-ground effects in the watercolor illusion. Spatial Vision 19, 323340.CrossRefGoogle ScholarPubMed
von der Heydt, R., Zhou, H. & Friedman, H.S. (2003). Neural coding of border ownership: Implications for the theory of figure-ground perception. In Perceptual Organization in Vision: Behavioral and Neural Perspectives, ed. Behrmann, M., Kimchi, R. & Olson, C.R., pp. 281304. Mahwah: Lawrence Erlbaum Associates.Google Scholar
Werner, J.S., Pinna, B. & Spillmann, L. (2007). The Brain and the world of illusory colors. Scientific American 3, 9095.CrossRefGoogle Scholar
Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4, 301350.CrossRefGoogle Scholar
Zhou, H., Friedman, H.S. & von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. Journal of Neuroscience 20, 65946611.CrossRefGoogle ScholarPubMed