Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T20:45:53.500Z Has data issue: false hasContentIssue false

Neurofibrillar bipolar cells in the capybara retina

Published online by Cambridge University Press:  02 June 2009

Elizabeth S. Yamada
Affiliation:
Departamento de Fisiologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075–900 Belém, Pará, Brasil
Luiz Carlos L. Silveira
Affiliation:
Departamento de Fisiologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075–900 Belém, Pará, Brasil

Abstract

Using a reduced-silver neurofibrillar method, we stained a population of bipolar cells in the capybara retina. These cells are distributed throughout the retina following the same topography of other retinal cell classes as the A-type horizontal cells and ganglion cells. The level of axonal stratification, mosaic regularity, and dendritic coverage factor suggest that these neurofibrillar bipolar cells comprise a population of sublamina a cone bipolar cells.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boycott, B.B. & Peichl, L. (1981). Neurofibrillar staining of cat retinae. Proceedings of the Royal Society B (London) 212, 139156.Google Scholar
Boycott, B.B. & Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience 3, 10691088.CrossRefGoogle ScholarPubMed
Cattaneo, D. (1922). La struttra della retina nei vertebrati. Annale di Ottalmologia 50, 349390.Google Scholar
Cohen, E. & Sterling, P. (1990 a). Demonstration of cell types among cone bipolar neurons of cat retina. Philosophical Transactions of the Royal Society B (London) 330, 305321.Google ScholarPubMed
Cohen, E. & Sterling, P. (1990 b). Convergence and divergence of cones onto bipolar cells in the central area of cat retina. Philosophical Transactions of the Royal Society B (London) 330, 323328.Google Scholar
Dacheux, R.F. & Ravjola, E. (1986). The rod pathway in the rabbit retina: A depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331345.CrossRefGoogle ScholarPubMed
Dahl, D. & Bignami, A. (1991). Neurofilament phosphorylation in the axonless horizontal cells. Brain Research 553, 163166.CrossRefGoogle ScholarPubMed
Freed, M.A., Smith, R.G. & Sterling, P. (1987). Rod bipolar array in the cat retina: Pattern of input from rods and GABA-accumulating amacrine cells. Journal of Comparative Neurology 266, 445455.CrossRefGoogle ScholarPubMed
Gallego, A. (1971). Horizontal and amacrine cells in the mammal's retina. Vision Research (Suppl.) 3, 3350.Google Scholar
Gallyas, F. (1980). Chemical nature of the first products (nuclei) of the argyrophil staining. Acta Histochemica 67, 145158.CrossRefGoogle ScholarPubMed
Grünert, U. & Martin, P.R. (1991). Rod bipolar cells in the macaque monkey retina: Immunoreactivity and connectivity. Journalof Neuroscience 11, 27422758.CrossRefGoogle ScholarPubMed
Grünert, U., Martin, P.R. & Wässle, H. (1994). Immunocytochemical analysis of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology 348, 607627.CrossRefGoogle ScholarPubMed
Honrubia-López, F.M. & Elliot, J.H. (1969). Horizontal cell of the mammal retina. Archives of Ophthalmology 82, 98104.Google Scholar
Kolb, H. & Famiglietti, E.V. (1974). Rod and cone pathways in the inner plexiform layer of cat retina. Science 186, 4749.CrossRefGoogle ScholarPubMed
Kolmer, W. (1936). Die Netzhaut (Retina). In Handbuch der Mikroskopischen Anatomie, ed. Möllendorf, W. v., Chapter 10 of Vol. III/2 (Auge), pp. 295468, Berlin: Springer-Verlag.Google Scholar
Lima, S.M.A., Silveira, L.C.L. & Perry, V.H. (1993). The M-ganglion cell density gradient in New World monkeys. Brazilian Journal of Medical and Biological Research 26, 961964.Google ScholarPubMed
Lima, S.M.A., Silveira, L.C.L. & Perry, V.H. (1996). Distribution of M retinal ganglion cells in diurnal and nocturnal New-World monkeys. Journal of Comparative Neurology 368, 538552.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Löhrke, S., Brandstätter, J.H., Boycott, B.B. & Peichl, L. (1995). Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location. Journal of Neurocytology 24, 283300.Google Scholar
Peichl, L. (1989). Alpha and delta ganglion cells in the rat retina. Journal of Comparative Neurology 286, 120139.CrossRefGoogle ScholarPubMed
Peichl, L. & González-Soriano, J. (1993). Unexpected presence of neurofilaments in axon-bearing horizontal cell of the mammalian retina. Journal of Neuroscience 13, 40914100.Google Scholar
Peichl, L. & González-Soriano, J. (1994). Morphological types of horizontal cell in rodent retinae: Comparison of rat, mouse, gerbil, and guinea pig. Visual Neuroscience 11, 501517.Google Scholar
Peichl, L., Ott, H. & Boycott, B.B. (1987 a). Alpha ganglion cells in mammalian retinae. Proceedings of the Royal Society B (London) 231, 169197.Google ScholarPubMed
Peichl, L., Buhl, E.H. & Boycott, B.B. (1987 b). Alpha ganglion cells in rabbit retina. Journal of Comparative Neurology 263, 2541.CrossRefGoogle ScholarPubMed
Shaw, G. & Weber, K. (1984). The intermediate filament complement of the retina: A comparison between different mammalian species. European Journal of Cell Biology 33, 95104.Google ScholarPubMed
Silveira, L.C.L. & Perry, V.H. (1990). A neurofibrillar staining method for retina and skin: A simple modification for improved staining and reliability. Journal of Neuroscience Methods 33, 1121.Google Scholar
Silveira, L.C.L. & Perry, V.H. (1991). The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience 40, 217237.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Picanço-Diniz, C.W. & Oswaldo-Cruz, E. (1989 a). The distribution and size of ganglion cells in the retinae of large Amazon rodents. Visual Neuroscience 2, 221235.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Yamada, E.S. & Picanço-Diniz, C.W. (1989 b). Displaced horizontal cells and biplexiform horizontal cells in the mammalian retina. Visual Neuroscience 3, 483488.Google Scholar
Strettoi, E., Dacheux, R.F. & Raviola, E. (1990). Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. Journal of Comparative Neurology 295, 449466.CrossRefGoogle ScholarPubMed
van der Stricht, O. (1904). La nouvelle méthode de Ramón y Cajal. Son application a la rétine. Extrait des Annales de la Société de Médecine de Gand, deuxième fascicule, 43.Google Scholar
Vaney, D.I., Peichl, L. & Boycott, B.B. (1981). Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. Journal of Comparative Neurology 199, 373391.Google Scholar
Vermes, L. (1905). Ueber die Neurofibrillen der Retina. Anatomischer Anzeiger 26, 601613.Google Scholar
Vickers, J.C. & Costa, M. (1992). The neurofilament triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea pig. Neuroscience 49, 73100.Google Scholar
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of lhe Royal Sodely B (London) 200, 441461.Google Scholar
Wässle, H., Peichl, L. & Boycott, B.B. (1978). Topography of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 269291.Google Scholar
Yamada, E.S., Silveira, L.C.L. & Coimbra, A.J.F. (1992). Topography of A-type horizontal cells in the retina of the capybara. Brazilian Journal of Medical and Biological Research 25, 619632.Google Scholar