Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T11:53:20.221Z Has data issue: false hasContentIssue false

Neuroactive peptides as markers of retinal ganglion cell populations that differ in anatomical organization and function

Published online by Cambridge University Press:  02 June 2009

Rodrigo O. Kuljis
Affiliation:
Section of Neuroanatomy, Yale University School of Medicine, New Haven
Harvey J. Karten
Affiliation:
Department of Neurosciences, University of California, San Diego, La Jolla

Abstract

Recent immunocytochemical studies indicate the existence of several classes of peptide- (PRGC) and catecholamine-containing retinal ganglion cells in anurans, birds, and mammals. Different classes of PRGC project to discrete and seemingly unique layers in the retino-recipient portion of the anuran and avian optic tectum. Peptide-containing retinofugal projections to the frog tectum originate early in development, and are reestablished by some classes of PRGC during regeneration of the optic nerve. These findings indicate that chemically specific, parallel retinofugal pathways presumably subserve different functional aspects of vision in vertebrates. Exciting prospects for research include the correlation of physiologically with immunocytochemically defined classes of retinal ganglion cells, the analysis of the possible role of neuroactive peptides in retinofugal transmission, and the pharmacological manipulation of putative peptidergic retinofugal pathways to analyze their role in visual function.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronin, N., Difiglia, M. & Leeman, S.E. (1983). Substance P. In Brain Peptides, ed. Krieger, D.T., Brownstein, M.J. & Martin, J.B., pp. 783804, New York: Wiley.Google Scholar
Bishop, G.H. (1946). Neural mechanisms of cutaneous sense. Physiological Reviews 26, 77102.CrossRefGoogle ScholarPubMed
Brecha, N.C., Eldred, W.E., Kuljis, R.O. & Karten, H.J. (1984). Identification and localization of biologically active peptides in the vertebrate retina. In Progress in Retinal Research, ed. Osborne, N. & Chader, J., pp. 185226, Oxford: Pergamon.Google Scholar
Brecha, N., Ciluffo, M. & Bolz, J. (1985). Identification of substance P immunoreactive ganglion cells in the rabbit retina. Society for Neuroscience Abstracts 11, 1219 (355.16).Google Scholar
Brecha, M., Johnson, D., Lieberman, A.R. & Parnavelas, J. (1986). Central projections of substance P-containing ganglion cells in the rabbit retina. Society for Neuroscience Abstracts 12, 1036 (285.4).Google Scholar
Brecha, N., Johnson, D., Bolz, J., Sharma, S., Parnavelas, J.G. & Lieberman, A.R. (1987). Substance P-immunoreactive retinal ganglion cells and their central axon terminals in the rabbit. Nature 327, 155158.CrossRefGoogle ScholarPubMed
Britto, L.R.G., Keyser, K.T., Hamasaki, D.E. & Karten, H.J. (1988). A catecholaminergic subpopulation of retinal displaced ganglion cells projects to the accessory optic nucleus in the pigeon (Columba livia). Journal of Comparative Neurology (in press).Google Scholar
Di Maggio, D.A., Chronwall, R.M., Buchanan, K. & O'Donohue, T.L. (1985). Pancreatic polypeptide immunoreactivity in the rat brain is actually neuropeptide Y. Neuroscience 15, 11491157.Google Scholar
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). The distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of the chick (Gallus gallus). Journal of Comparative Neurology 266, 220223.Google Scholar
Fite, K.V., Brecha, N., Karten, H.J. & Hunt, S.P. (1981). Displaced ganglion cells and the accessory optic system of pigeon. Journal of Comparative Neurology 195, 279288.Google Scholar
Freeman, J.A. & Norden, J.J. (1984). Neurotransmitters in the optictectum of nonmammalians. In Comparative Neurology of the Optic Tectum, ed. Vanegas, H., pp. 469546, New York: Elsevier.CrossRefGoogle Scholar
Hakanson, R. & Sundler, F. (1985). Tachykinin Antagonists. New York: Elsevier.Google Scholar
Hokfelt, T., Johansson, O. & Goldstein, M. (1984). Chemical anatomy of the brain. Science 225, 13261334.CrossRefGoogle ScholarPubMed
Humphrey, M.F., Dunlop, S.A. & Beazley, L.D. (1982). Retinal ganglion cell death during regeneration of the optic nerve in the frog (Hyla moorei). Proceedings of the Australian Society of Physiology and Pharmacology 13, 76P.Google Scholar
Humphrey, M.F. & Beazley, L.D. (1983). An electrophysiological study of early retinotectal projection patterns during regeneration following optic nerve crush inside the cranium in Hyla moorei. Brain Research 269, 153158.CrossRefGoogle ScholarPubMed
Knapp, H., Scalia, F. & Riss, W. (1965). The optic tract of Rana pipiens. Ada Neurologic Scandinavica 41, 325355.CrossRefGoogle Scholar
Kuljis, R.O. & Karten, H.J. (1982). Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. Journal of Comparative Neurology 212, 188201.Google Scholar
Kuljis, R.O. & Karten, H.J. (1983). Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optictectum following retinal deafferentation. Journal of Comparative Neurology 217, 239251.CrossRefGoogle Scholar
Kuljis, R.O., Krause, J.E. & Karten, H.J. (1984). Peptide-like immunoreactivity in anuran optic nerve fibers. Journal of Comparative Neurology 226, 222237.CrossRefGoogle ScholarPubMed
Kuljis, R.O. & Karten, H.J. (1985). Regeneration of peptide-containing retinofugal axons into the optic tectum with reappearance of a substance P-containing lamina. Journal of Comparative Neurology 240, 115.Google Scholar
Kuuis, R.O. & Karten, H.J. (1986). Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog (Rana pipiens). Proceedings of the National Academy of Sciences, U.S.A. 83, 57365740.Google Scholar
Lázár, G. & Szekely, G. (1969). Distribution of optic terminals in the different optic centres in the frog. Brain Research 16, 114.Google Scholar
Lázár, G. (1978). Application of cobalt-filling technique to show retinal projection in the frog. Neuroscience 3, 725736.Google Scholar
Maturana, H.R., Lettvin, J.Y., McCulloch, W.S. & Pitts, W. (1959). Evidence that cut optic nerve fibers in a frog regenerate to their proper places in the tectum. Science 130, 17091710.CrossRefGoogle Scholar
Orrego, F. (1979). Criteria for the identification of central neurotransmitters mitter, and their application to studies with some nerve tissue preparations in vitro. Neuroscience, 4 10371057.CrossRefGoogle Scholar
Pernow, B. (1983). Substance P. Pharmacological Reviews 35, 85141.Google Scholar
Pickel, V.M. (1981). Immunocytochemical methods. In Neuroanatomical Tract-Tracing Methods, ed. Heimer, L. & RoBards, M.J., pp. 483509, New York: Plenum Press.Google Scholar
Potter, H.D. (1969). Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbeiana). Journal of Comparative Neurology 136, 203232.Google Scholar
Ramón Cajal, P. (1946). El cerebro de los batracios. Trabajos del Instituto Cajal de investigaciones Biolo'gicas 38, 4111.Google Scholar
Rickman, D., Johnson, D., Sharma, S. & Brecha, N. (1986). Distribution of substance P and somatostatin immunoreactive cells in the rabbit retina. Society for Neuroscience Abstracts 12, 641 (177.5).Google Scholar
Scalia, F., Knapp, H., Halpern, M. & Riss, W. (1968). New observations on the retinal projection in the frog. Brain, Behavior and Evolution 1, 324353.CrossRefGoogle Scholar
Scalia, F. & Colman, D.R. (1974). Aspects of central projection of the optic nerve in the frog as revealed by anterograde migration of HRP. Brain Research 79, 496504.CrossRefGoogle Scholar
Scalia, F. (1976). The optic pathway of the frog: nuclear organization and connections. In Frog Neurobiology, ed. Llinas, R. & Precht, W., pp. 386406, New York: Springer-Verlag.CrossRefGoogle Scholar
Scalia, F., Arango, V. & Scmgman, E.L. (1985). Loss and displacement of ganglion cells after optic nerve regeneration in adult Ranapipiens. Brain Research 344, 267280.CrossRefGoogle Scholar
Sperry, R.W. (1944). Optic nerve regeneration with return of vision in anurans. Journal of Neurophysiology 7, 5770.CrossRefGoogle Scholar
Stell, W.D., Marshak, N., Yamada, N., Brecha, N. & Karten, H.J. (1980). Peptides are in the eye of the beholder. Trends in Neurosciences 3, 292295.Google Scholar
Sternberger, L.A. (1986). Immunocytochemistry. New York: Wiley.Google Scholar
Stone, J., Dreher, B. & Leventhal, A. (1979). Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Research Reviews 1, 345394.Google Scholar
Swaab, D.F. (1982). Comments on the validity of immunocytochemical methods. In Cytochemical Methods in Neuroanatomy, ed. Palay, S.L. & Palay, V.C., pp. 423440, New York: Liss.Google Scholar
Wilczynski, W. & Northcutt, R.G. (1977). Afferents to the optic tectum of the leopard frog. Journal of Comparative Neurology 173, 219230.CrossRefGoogle Scholar