Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:07:59.712Z Has data issue: false hasContentIssue false

Neural differentiation in the retina of the larval sea lamprey (Petromyzon marinus)

Published online by Cambridge University Press:  02 June 2009

Kalman Rubinson
Affiliation:
Department of Physiology and Biophysics, New York University School of Medicine, New York
Hilary Cain
Affiliation:
Department of Physiology and Biophysics, New York University School of Medicine, New York

Abstract

The peripheral retina of the sea lamprey develops in a 5-year-long process in which only certain neurons differentiate each year. The growth of cell layers, the differentiation of the neurons, and the morphology of their dendrites and axons were studied with normal, HRP, and Golgi preparations. Ganglion cells are differentiated in 3-year-old larvae, amacrine and horizontal cells in 4-year-old larvae, photoreceptor cells in stage I transformers, and bipolar cells in stage III transformers. Each new development is expressed as a radial gradient of differentiation. As a result of this protracted and stepped process, lamprey retinal neurons, particularly ganglion cells, differentiate in the absence of other cells to which they will ultimately be connected and may express their individual genetic programs more fully than in other vertebrate retinas. This could account for the unusual relationship of the ganglion cell, inner plexiform, and optic nerve layers and for the very high ratio of displaced to orthotopic ganglion cells.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anadon, E.M.Y.R. (1987). The development of the retina and the optic tectum of Petromyzon marinus L. Journal fur Hirnsforschung 28, 445456.Google Scholar
Ball, A.K. & Dickson, D.H. (1983). Displaced amacrine and ganglion cells in the newt retina. Experimental Eye Research 36, 199213.CrossRefGoogle ScholarPubMed
Bingelli, R.L. & Paule, W.J. (1969). The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. Journal of Comparative Neurology 137, 118.CrossRefGoogle Scholar
Blanks, J. (1982). Cellular differentiation in the mammalian retina. In The Structure of the Eye, ed. Hollyfield, J.G., pp. 237246. New York: Elsevier Biomedical.Google Scholar
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Philosophical Transactions of the Royal Society B (London) 255, 109184.Google Scholar
Bullock, T.H., Moore, J.K. & Fields, R.D. (1984). Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neuroscience Letters 48, 145148.CrossRefGoogle ScholarPubMed
Cain, H. & Rubinson, K. (1984). Distribution of ganglion cells in the larval lamprey retina. Society for Neuroscience Abstracts 10, 838.Google Scholar
Caley, D.W. & Maxwell, D.S. (1968). An electron-microscopic study of neurons during postnatal development of the rat visual cortex. Journal of Comparative Neurology 133, 1744.CrossRefGoogle Scholar
Colonnier, M. (1964). The tangential organization of the visual cortex. Journal of Anatomy 98, 327343.Google ScholarPubMed
Dickson, D.H. & Collard, T.R. (1979). Retinal development in the lamprey (Petromyzon marinus L.): premetamorphic ammocoete eye. American Journal of Anatomy 154, 321336.CrossRefGoogle ScholarPubMed
Dickson, D.H. & Graves, D.A. (1979). Fine structure of the lamprey photoreceptors and retinal pigment epithelium (Petromyzon marinus L.). Experimental Eye Research 29, 4560.CrossRefGoogle ScholarPubMed
Dickson, D.H. & Graves, D.A. (1981). The ultrastructure and development of the eye. In The Biology of Lampreys, Vol. 3, ed. Hardisty, M.W. & Potter, I.C., pp. 4394. New York: Academic Press.Google Scholar
Drager, U.C. & Olsen, J.F. (1981). Ganglion cell distribution in the retina of the mouse. Investigative Ophthalmology and Vision Science 20, 285293.Google ScholarPubMed
Dutting, D., Gierer, A. & Hansmann, G. (1983). Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina. Developmental Brain Research 10, 2132.CrossRefGoogle Scholar
Ehinger, B., Holmberg, K. & Ohman, P. (1977). Aminergic and in-dolamine accumulating neurons in the retina of the river lamprey (Lampetra fluviatilis). Acta Zoologica (Stockholm) 58, 117123.CrossRefGoogle Scholar
Fite, K.V., Brecha, N., Karten, H.J. & Hunt, S.P. (1981). Displaced ganglion cells and the accessory optic system of the pigeon. Journal of Comparative Neurology 195, 279288.CrossRefGoogle ScholarPubMed
Grant, P., Rubin, E. & Cima, C. (1980). Ontogeny of the retina and optic nerve In Xenopus laevis, I: Stages in the early development of the retina. Journal of Comparative Neurology 189, 593613.CrossRefGoogle ScholarPubMed
Grun, G. (1982). The Development of the Vertebrate Retina: A Comparative Study. New York: Springer-Verlag.CrossRefGoogle Scholar
Hinds, J.W. & Hinds, P.L. (1974). Early ganglion cell differentiation in the mouse retina: an electron-microscopic analysis utilizing serial sections. Developmental Biology 37, 381416.CrossRefGoogle ScholarPubMed
Holmberg, K. (1978). Light- and electron-microscopic investigation of the optic nerve fibre layer in the river lamprey (Lampetra fluviatilis). Vision Research 16, 237239.CrossRefGoogle Scholar
Jacobson, M. (1976). Histogenesis of the retina in the clawed frog with implications for pattern of development of retinotectal connections. Brain Research 103, 541545.CrossRefGoogle ScholarPubMed
Johns, P.R. (1977). Growth of the adult goldfish eye, III: Source of the new retinal cells. Journal of Comparative Neurology 176, 343358.CrossRefGoogle ScholarPubMed
Kahn, A. J. (1974). An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Developmental Biology 38, 3040.CrossRefGoogle ScholarPubMed
Keibel, F. (1928). Beitrage zur anatomie zur entwicklungsgeschichte und zur stammgeschichte der sehorgane der cyklostomen. Zeitschrifte fur mikrosk.-anat. Forschung 12, 391456.Google Scholar
Kennedy, M.C. & Rubinson, K. (1977). Retinal projections in larval, transforming, and adult sea lamprey (Petromyzon marinus). Journal of Comparative Neurology 171, 465480.CrossRefGoogle ScholarPubMed
Kleerekoper, H. (1972). The sense organs. In The Biology of Lampreys, Vol. 2, ed. Hardisty, M.W. & Potter, I.C., pp. 373404. New York: Academic Press.Google Scholar
Lavelle, A. & Lavelle, F.W. (1970). Cytodifferentiation in the neuron. In Developmental Neurobiology, ed. Himwich, W.A., pp. 117164. Springfield, Illinois: Thomas.Google Scholar
Manion, P.J. & Smith, B.R. (1978). Biology of larval and metamorphosing sea lampreys (Petromyzon marinus) of the 1960 year class in the Big Garlic River, Michigan, Part II, 1966–72. Great Lakes Fisheries Commission Technical Reports 30, 135.Google Scholar
Manion, P.J. & Stauffer, T.M. (1970). Metamorphosis of the landlocked sea lamprey (Petromyzon marinus). Journal of the Fisheries Research Board of Canada 27, 17351746.CrossRefGoogle Scholar
Maslim, J. & Stone, J. (1986). Synaptogenesis in the retina of the cat. Brain Research 373, 3548.CrossRefGoogle ScholarPubMed
Maslim, J. & Stone, J. (1988). Time course of stratification of the dendritic fields of ganglion cells in the retina of the cat. Developmental Brain Research 44, 8793.CrossRefGoogle ScholarPubMed
Maslim, J., Webster, M. & Stone, J. (1986). Stages in the structural differentiation of retinal ganglion cells. Journal of Comparative Neurology 254, 382402.CrossRefGoogle ScholarPubMed
Mesulam, M-M. (1978). A tetramethylbenzidine method for the light-microscopic tracing of neural connections with horseradish peroxidase (HRP) neurohistochemistry. In 1978 short Course in Neuroanatom-ical Techniques. Washington, DC: Society for Neuroscience, pp. 6571.Google Scholar
Negishi, K., Teranishi, T. & Kato, S. (1984). Regular orientation of horizontal cells in the river lamprey retina. Neuroscience Letters 50, 145150.CrossRefGoogle ScholarPubMed
Ohman, P. (1976). Fine structure of photoreceptors and associated neurons in the retina of Lampetra fluviatilis (Cyclostomi). Vision Research 16, 659662.CrossRefGoogle ScholarPubMed
Ohman, P. (1977). Fine structure of the optic nerve of Lampetra fluviatilis (Cyclostomi). Vision Research 17, 719722.CrossRefGoogle ScholarPubMed
Perry, V.H., Henderson, Z. & Linden, R. (1983). Postnatal changes in retinal ganglion cell and optic axon population in the pigmented rat. Journal of Comparative Neurology 219, 356368.CrossRefGoogle ScholarPubMed
Potter, I.C., Hilliard, R.W. & Bird, D.J. (1982). Stages in metamorphosis. In The Biology of Lampreys, Vol. 48, ed. Hardisty, M.W. & Potter, I.C., pp. 137164. New York: Academic Press.Google Scholar
Purvis, H.A. (1979). Variations in growth, age at transformation, and sex ratio of sea lampreys reestablished in chemically treated tributaries of the upper Great Lakes. Great Lakes Fisheries Commission Technical Reports 35, 136.Google Scholar
Purvis, H.A. (1980). Effects of temperature on metamorphosis and the age and length at metamorphosis in sea lamprey (Petromyzon marinus) in the Great Lakes. Canadian Journal of Fisheries and Aquatic Science 37, 18271834.CrossRefGoogle Scholar
Ramoa, A.S., Campbell, G. & Shatz, C.J. (1988). Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. Journal of Neuroscience 8(11), 42394261.CrossRefGoogle ScholarPubMed
Rubinson, K. & Cain, H. (1983). Cell differentiation in the retina of the sea lamprey (Petromyzon marinus). Society for Neuroscience Abstracts 9, 803.Google Scholar
Rubinson, K. & Cain, H. (1988). Retinal differentiation in the sea lamprey (Petromyzon marinus) with a time scale in years. Society for Neuroscience Abstracts 14, 1041.Google Scholar
Rubinson, K., Ripps, H., Witkovsky, P. & Kennedy, M.C. (1977). Retinal development in the lamprey (Petromyzon marinus). Society for Neuroscience Abstracts 3, 575.Google Scholar
Sharma, S.C. & Ungar, F. (1980). Histogenesis of the goldfish retina. Journal of Comparative Neurology 191, 373382.CrossRefGoogle ScholarPubMed
Silver, J. & Sidman, R.L. (1980). A mechanism for the guidance and topographic patterning of retinal ganglion cell axons. Journal of Comparative Neurology 189, 101111.CrossRefGoogle ScholarPubMed
Straznicky, K. & Gaze, R.M. (1971). The growth of the retina In Xen-opus laevis: an ARG study. Journal of Embryology and Experimental Morphology 26, 6779.Google Scholar
Studnicka, F.K. (1912). Ueber die entwicklung und die bedeutung der seitenaugen von ammocoetes. Anatomischer Anzeiger 41, 561578.Google Scholar
Teranishi, T., Negishi, K. & Kato, S. (1982). Two types of light-induced response recorded from horizontal cells in the river lamprey retina. Neuroscience Letters 33, 4146.CrossRefGoogle ScholarPubMed
Tonosaki, A., Washioka, H., Hara, M., Ishikawa, M. & Watanabe, H. (1987). Neuroscience Research (Suppl.) 6, S107S118.Google Scholar
Turner, D.L. & Cepko, C.L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131136.CrossRefGoogle ScholarPubMed
Walsh, C., Polley, E.H., Hickey, T.L. & Guillery, R.W. (1983). Generation of cat retinal ganglion cells in relation to central pathways. Nature 302, 611614.CrossRefGoogle ScholarPubMed
Weidman, T. & Kuwabara, T. (1968). Postnatal development of the rat retina. Archives of Ophthalmology 79, 970984.CrossRefGoogle ScholarPubMed
Zimmerman, R.P., Polley, E.H. & Fortney, R.L. (1988). Cell birthdays and rate of differentiation of ganglion and horizontal cells of the developing cat's retina. Journal of Comparative Neurology 274, 7790.CrossRefGoogle ScholarPubMed