Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:42:00.589Z Has data issue: false hasContentIssue false

Low-level processing deficits underlying poor contrast sensitivity for moving plaids in anisometropic amblyopia

Published online by Cambridge University Press:  12 November 2012

YONG TANG
Affiliation:
CAS Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Hefei, People’s Republic of China
LINYI CHEN
Affiliation:
Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, People’s Republic of China Mingren Ophthalmology Hospital, Hefei, People’s Republic of China
ZHONGJIAN LIU
Affiliation:
Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, People’s Republic of China
CAIYUAN LIU
Affiliation:
Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, People’s Republic of China
YIFENG ZHOU*
Affiliation:
CAS Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Hefei, People’s Republic of China Research and Treatment Center of Amblyopia and Strabismus, University of Science and Technology of China, Hefei, People’s Republic of China State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, People’s Republic of China
*
Address correspondence and reprint requests to: Yifeng Zhou, CAS Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China. E-mail: zhouy@ustc.edu.cn.

Abstract

Many studies using random dot kinematograms have indicated a global motion processing deficit originated from extrastriate cortex, specifically middle temporal area (MT) and media superior temporal area (MST), in patients with amblyopia. However, the nature of this deficit remains unclear. To explore whether the ability of motion integration is impaired in amblyopia, contrast sensitivity for moving plaids and their corresponding component gratings were measured over a range of stimulus durations and spatial and temporal frequencies in 10 control subjects and 13 anisometropic amblyopes by using a motion direction discrimination task. The results indicated a significant loss of contrast sensitivity for moving plaids as well as for moving gratings at intermediate and high spatial frequencies in amblyopic eyes (AEs). Additionally, we found that the loss of contrast sensitivity for moving plaids was statistically equivalent to that for moving component gratings in AEs, that is, the former could be almost completely accounted for by the latter. These results suggest that the integration of motion information conveyed by component gratings of moving plaids may be intact in anisometropic amblyopia, and that the apparent deficits in contrast sensitivity for moving plaids in anisometropic amblyopia can be almost completely attributed to those for gratings, that is, low-level processing deficits.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaen-Stockdale, C. & Hess, R.F. (2008). The amblyopic deficit for global motion is spatial scale invariant. Vision Research 48, 19651971.CrossRefGoogle ScholarPubMed
Aaen-Stockdale, C., Ledgeway, T. & Hess, R.F. (2007). Second-order optic flow deficits in amblyopia. Investigative Ophthalmology & Visual Science 48, 55325538.CrossRefGoogle ScholarPubMed
Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.CrossRefGoogle ScholarPubMed
Anderson, S.J. & Burr, D.C. (1991). Spatial summation properties of directionally selective mechanisms in human vision. Journal of the Optical Society of America. A, Optics and Image Science 8, 13301339.CrossRefGoogle ScholarPubMed
Bonhomme, G.R., Liu, G.T., Miki, A., Francis, E., Dobre, M.C., Modestino, E.J., Aleman, D.O. & Haselgrove, J.C. (2006). Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. Journal of American Association for Pediatric Ophthalmology and Strabismus 10, 540546.CrossRefGoogle ScholarPubMed
Bonneh, Y.S., Sagi, D. & Polat, U. (2004). Local and non-local deficits in amblyopia: Acuity and spatial interactions. Vision Research 44, 30993110.CrossRefGoogle ScholarPubMed
Bonneh, Y.S., Sagi, D. & Polat, U. (2007). Spatial and temporal crowding in amblyopia. Vision Research 47, 19501962.CrossRefGoogle ScholarPubMed
Brainard, D.H. (1997). The psychophysics toolbox. Spatial Vision 10, 433436.CrossRefGoogle ScholarPubMed
Campos, E. (1995). Amblyopia. Survey of Ophthalmology 40, 2339.CrossRefGoogle ScholarPubMed
Chandna, A., Pennefather, P.M., Kovacs, I. & Norcia, A.M. (2001). Contour integration deficits in anisometropic amblyopia. Investigative Ophthalmology & Visual Science 42, 875878.Google ScholarPubMed
Chung, S.T., Li, R.W. & Levi, D.M. (2008). Crowding between first- and second-order letters in amblyopia. Vision Research 48, 788798.CrossRefGoogle ScholarPubMed
Ciuffreda, K.J., Levi, D.M. & Selenow, A. (1991). Amblyopia: Basic and Clinical Aspects. Boston, MA: Butterworth-Heinemann.Google Scholar
Constantinescu, T., Schmidt, L., Watson, R. & Hess, R.F. (2005). A residual deficit for global motion processing after acuity recovery in deprivation amblyopia. Investigative Ophthalmology & Visual Science 46, 30083012.CrossRefGoogle ScholarPubMed
Daw, N.W. (1998). Critical periods and amblyopia. Archives of Ophthalmology 116, 502505.CrossRefGoogle ScholarPubMed
Delicato, L.S. & Derrington, A.M. (2005). Coherent motion perception fails at low contrast. Vision Research 45, 23102320.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Badcock, D.R. (1992). Two-stage analysis of the motion of 2-dimensional patterns, what is the first stage? Vision Research 32, 691698.CrossRefGoogle ScholarPubMed
Ellemberg, D., Lewis, T.L., Maurer, D., Brar, S. & Brent, H.P. (2002). Better perception of global motion after monocular than after binocular deprivation. Vision Research 42, 169179.CrossRefGoogle ScholarPubMed
El-Shamayleh, Y., Kiorpes, L., Kohn, A., & Movshon, J.A. (2010). Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. Journal of Neuroscience 30, 1219812209.CrossRefGoogle ScholarPubMed
Gegenfurtner, K.R. (1998). Thresholds for the identification of the direction of motion of plaid patterns defined by luminance or chromatic contrast. Vision Research 38, 881888.CrossRefGoogle ScholarPubMed
Georgeson, M.A. & Scott-Samuel, N.E. (2000). Spatial resolution and receptive field height of motion sensors in human vision. Vision Research 40, 745758.CrossRefGoogle ScholarPubMed
Hess, R.F. & Anderson, S.J. (1993). Motion sensitivity and spatial undersampling in amblyopia. Vision Research 33, 881896.CrossRefGoogle ScholarPubMed
Hess, R.F. & Bradley, A. (1980). Contrast perception above threshold is only minimally impaired in human amblyopia. Nature 287, 463464.CrossRefGoogle ScholarPubMed
Hess, R.F. & Howell, E.R. (1977). The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification. Vision Research 17, 10491055.CrossRefGoogle ScholarPubMed
Hess, R.F. & Malin, S.A. (2003). Threshold vision in amblyopia: Orientation and phase. Investigative Ophthalmology & Visual Science 44, 47624771.CrossRefGoogle ScholarPubMed
Hess, R.F., Mansouri, B., Dakin, S.C. & Allen, H.A. (2006). Integration of local motion is normal in amblyopia. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 23, 986992.CrossRefGoogle ScholarPubMed
Hess, R.F., Wang, Y.Z., Demanins, R., Wilkinson, F. & Wilson, H.R. (1999). A deficit in strabismic amblyopia for global shape detection. Vision Research 39, 901914.CrossRefGoogle ScholarPubMed
Ho, C.S. & Giaschi, D.E. (2009). Low- and high-level motion perception deficits in anisometropic and strabismic amblyopia: Evidence from fMRI. Vision Research 49, 28912901.CrossRefGoogle ScholarPubMed
Howell, E.R., Mitchell, D.E. & Keith, C.G. (1983). Contrast thresholds for sine gratings of children with amblyopia. Investigative Ophthalmology & Visual Science 24, 782787.Google ScholarPubMed
Jeffrey, B.G., Wang, Y.Z. & Birch, E.E. (2004). Altered global shape discrimination in deprivation amblyopia. Vision Research 44, 167177.CrossRefGoogle ScholarPubMed
Kiorpes, L. (2006). Visual processing in amblyopia: Animal studies. Strabismus 14, 310.CrossRefGoogle ScholarPubMed
Kiorpes, L. & McKee, S.P. (1999). Neural mechanisms underlying amblyopia. Current Opinion in Neurobiology 9, 480486.CrossRefGoogle ScholarPubMed
Kiorpes, L., Tang, C. & Movshon, J.A. (2006). Sensitivity to visual motion in amblyopic macaque monkeys. Visual Neuroscience 23, 247256.CrossRefGoogle ScholarPubMed
Kiper, D.C. & Kiorpes, L. (1994). Suprathreshold contrast sensitivity in experimentally strabismic monkeys. Vision Research 34, 15751583.CrossRefGoogle ScholarPubMed
Lagreze, W.D. & Sireteanu, R. (1991). Two-dimensional spatial distortions in human strabismic amblyopia. Vision Research 31, 12711288.CrossRefGoogle ScholarPubMed
Levi, D.M., Yu, C., Kuai, S.G. & Rislove, E. (2007). Global contour processing in amblyopia. Vision Research 47, 512524.CrossRefGoogle ScholarPubMed
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America 49(Suppl. 2), 467+.CrossRefGoogle ScholarPubMed
Li, X., Lu, Z.L., Xu, P., Jin, J. & Zhou, Y. (2003). Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors. Journal of Neuroscience Methods 130, 918.CrossRefGoogle ScholarPubMed
Majaj, N.J., Carandini, M. & Movshon, J.A. (2007). Motion integration by neurons in macaque MT is local, not global. The Journal of Neuroscience 27, 366370.CrossRefGoogle Scholar
Mansouri, B., Allen, H.A., Hess, R.F., Dakin, S.C. & Ehrt, O. (2004). Integration of orientation information in amblyopia. Vision Research 44, 29552969.CrossRefGoogle ScholarPubMed
Mansouri, B. & Hess, R.F. (2006). The global processing deficit in amblyopia involves noise segregation. Vision Research 46, 41044117.CrossRefGoogle ScholarPubMed
McKee, S.P., Levi, D.M. & Movshon, J.A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision 3, 380405.CrossRefGoogle ScholarPubMed
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1985). The analysis of moving patterns. In Pattern Recognition Mechanisms, ed. Chagass, C., Gattass, R. & Grossberg, S., Rome, Italy: Vatican Press.Google Scholar
Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision 10, 437442.CrossRefGoogle ScholarPubMed
Pelli, D.G., Rubin, G.S. & Legge, G.E. (1986). Predicting the contrast sensitivity of low vision observers. Journal of the Optical Society of America. A 3, 56.Google Scholar
Qiu, Z., Xu, P., Zhou, Y. & Lu, Z.L. (2007). Spatial vision deficit underlies poor sine-wave motion direction discrimination in anisometropic amblyopia. Journal of Vision 7, 7.17.16.CrossRefGoogle ScholarPubMed
Rohaly, A.M. & Owsley, C. (1993). Modeling the contrast-sensitivity functions of older adults. Journal of the Optical Society of America. A, Optics and Image Science 10, 15911599.CrossRefGoogle ScholarPubMed
Schor, C.M. & Levi, D.M. (1980). Direction selectivity for perceived motion in strabismic and anisometropoic amblyopia. Investigative Ophthalmology & Visual Science 19, 10941104.Google ScholarPubMed
Simmers, A.J., Ledgeway, T. & Hess, R.F. (2005). The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia. Vision Research 45, 449460.CrossRefGoogle ScholarPubMed
Simmers, A.J., Ledgeway, T., Hess, R.F. & McGraw, P.V. (2003). Deficits to global motion processing in human amblyopia. Vision Research 43, 729738.CrossRefGoogle ScholarPubMed
Simmers, A.J., Ledgeway, T., Mansouri, B., Hutchinson, C.V. & Hess, R.F. (2006). The extent of the dorsal extra-striate deficit in amblyopia. Vision Research 46, 25712580.CrossRefGoogle ScholarPubMed
Simons, K. (2005). Amblyopia characterization, treatment, and prophylaxis. Survey of Ophthalmology 50, 123166.CrossRefGoogle ScholarPubMed
Sireteanu, R., Lagreze, W.D. & Constantinescu, D.H. (1993). Distortions in two-dimensional visual space perception in strabismic observers. Vision Research 33, 677690.CrossRefGoogle ScholarPubMed
Sireteanu, R., Thiel, A., Fikus, S. & Iftime, A. (2008). Patterns of spatial distortions in human amblyopia are invariant to stimulus duration and instruction modality. Vision Research 48, 11501163.CrossRefGoogle ScholarPubMed
Thompson, B., Aaen-Stockdale, C.R., Mansouri, B. & Hess, R.F. (2008). Plaid perception is only subtly impaired in strabismic amblyopia. Vision Research 48, 13071314.CrossRefGoogle ScholarPubMed
Thompson, B., Villeneuve, M.Y., Casanova, C. & Hess, R.F. (2012). Abnormal cortical processing of pattern motion in amblyopia: Evidence from fMRI. NeuroImage 60, 13071315.CrossRefGoogle ScholarPubMed
Wilson, H.R., Ferrera, V.P. & Yo, C. (1992). A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience 9, 7997.CrossRefGoogle ScholarPubMed
Wright, M.J. & Gurney, K.N. (1992). Lower threshold of motion for one and two dimensional patterns in central and peripheral vision. Vision Research 32, 121134.CrossRefGoogle ScholarPubMed