Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T11:19:39.057Z Has data issue: false hasContentIssue false

β-ionone activates and bleaches visual pigment in salamander photoreceptors

Published online by Cambridge University Press:  01 May 2009

TOMOKI ISAYAMA*
Affiliation:
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
S.L. McCABE ENGLAND
Affiliation:
Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
R.K. CROUCH
Affiliation:
Department of Ophthalmology, Storm Eye Research Institute, Medical University of South Carolina, Charleston, South Carolina
A.L. ZIMMERMAN
Affiliation:
Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island
C.L. MAKINO
Affiliation:
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
*
*Address correspondence and reprint requests to: Tomoki Isayama, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114. E-mail: tomoki_isayama@meei.harvard.edu

Abstract

Vision begins with photoisomerization of 11-cis retinal to the all-trans conformation within the chromophore-binding pocket of opsin, leading to activation of a biochemical cascade. Release of all-trans retinal from the binding pocket curtails but does not fully quench the ability of opsin to activate transducin. All-trans retinal and some other analogs, such as β-ionone, enhance opsin’s activity, presumably on binding the empty chromophore-binding pocket. By recording from isolated salamander photoreceptors and from patches of rod outer segment membrane, we now show that high concentrations of β-ionone suppressed circulating current in dark-adapted green-sensitive rods by inhibiting the cyclic nucleotide-gated channels. There were also decreases in circulating current and flash sensitivity, and accelerated flash response kinetics in dark-adapted blue-sensitive (BS) rods and cones, and in ultraviolet-sensitive cones, at concentrations too low to inhibit the channels. These effects persisted in BS rods even after incubation with 9-cis retinal to ensure complete regeneration of their visual pigment. After long exposures to high concentrations of β-ionone, recovery was incomplete unless 9-cis retinal was given, indicating that visual pigment had been bleached. Therefore, we propose that β-ionone activates and bleaches some types of visual pigments, mimicking the effects of light.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartl, F.J., Fritze, O., Ritter, E., Herrmann, R., Kuksa, V., Palczewski, K., Hofmann, K.P. & Ernst, O.P. (2005). Partial agonism in a G protein-coupled receptor: Role of the retinal ring structure in rhodopsin activation. The Journal of Biological Chemistry 280, 3425934267.CrossRefGoogle Scholar
Brown, R.L., Strassmaier, T., Brady, J.D. & Karpen, J.W. (2006). The pharmacology of cyclic nucleotide-gated channels: Emerging from the darkness. Current Pharmaceutical Design 12, 35973613.CrossRefGoogle ScholarPubMed
Cohen, G.B., Oprian, D.D. & Robinson, P.R. (1992). Mechanism of activation and inactivation of opsin: Role of Glu113 and Lys296. Biochemistry 31, 1259212601.CrossRefGoogle ScholarPubMed
Cohen, G.B., Yang, T., Robinson, P.R. & Oprian, D.D. (1993). Constitutive activation of opsin: Influence of charge at position 134 and size at position 296. Biochemistry 32, 61116115.CrossRefGoogle ScholarPubMed
Cornwall, M.C., Fein, A. & MacNichol, E.F. Jr. (1990). Cellular mechanisms that underlie bleaching and background adaptation. The Journal of General Physiology 96, 345372.CrossRefGoogle ScholarPubMed
Daemen, F.J. (1978). The chromophore binding space of opsin. Nature 276, 847848.CrossRefGoogle Scholar
Dean, D.M., Nguitragool, W., Miri, A., McCabe, S.L. & Zimmerman, A.L. (2002). All-trans-retinal shuts down rod cyclic nucleotide-gated ion channels: A novel role for photoreceptor retinoids in the response to bright light? Proceedings of the National Academy of Sciences of the United States of America 99, 83728377.CrossRefGoogle ScholarPubMed
Defoe, D.M. & Bok, D. (1983). Rhodopsin chromophore exchanges among opsin molecules in the dark. Investigative Ophthalmology & Visual Science 24, 12111226.Google ScholarPubMed
Fasick, J.I., Lee, N. & Oprian, D.D. (1999). Spectral tuning in the human blue cone pigment. Biochemistry 38, 1159311596.CrossRefGoogle ScholarPubMed
Filipek, S., Teller, D.C., Palczewski, K. & Stenkamp, R. (2003). The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annual Review of Biophysics and Biomolecular Structure 32, 375397.CrossRefGoogle ScholarPubMed
Fu, Y. & Yau, K.W. (2007). Phototransduction in mouse rods and cones. Pflügers Archiv: European Journal of Physiology 454, 805819.CrossRefGoogle ScholarPubMed
Fukada, Y. & Yoshizawa, T. (1981). Activation of phosphodiesterase in frog rod outer segment by an intermediate of rhodopsin photolysis. II. Biochimica et Biophysica Acta 675, 195200.CrossRefGoogle ScholarPubMed
Fukada, Y., Yoshizawa, T., Ito, M. & Tsukida, K. (1982). Activation of phosphodiesterase in frog rod outer segment by rhodopsin analogues. Biochimica et Biophysica Acta 708, 112117.CrossRefGoogle ScholarPubMed
He, Q., Alexeev, D., Estevez, M.E., McCabe, S.L., Calvert, P.D., Ong, D.E., Cornwall, M.C., Zimmerman, A.L. & Makino, C.L. (2006). Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition. The Journal of General Physiology 128, 473485.CrossRefGoogle ScholarPubMed
Heck, M., Schädel, S.A., Maretzki, D. & Hofmann, K.P. (2003). Secondary binding sites of retinoids in opsin: Characterization and role in regeneration. Vision Research 43, 30033010.CrossRefGoogle ScholarPubMed
Horrigan, D.M., Tetreault, M.L., Tsomaia, N., Vasileiou, C., Borhan, B., Mierke, D.F., Crouch, R.K. & Zimmerman, A.L. (2005). Defining the retinoid binding site in the rod cyclic nucleotide-gated channel. The Journal of General Physiology 126, 453460.CrossRefGoogle ScholarPubMed
Isayama, T., Chen, Y., Kono, M., DeGrip, W.J., Ma, J.-X., Crouch, R.K. & Makino, C.L. (2006). Differences in the pharmacological activation of visual opsins. Visual Neuroscience 23, 899908.CrossRefGoogle ScholarPubMed
Jäger, S., Palczewski, K. & Hofmann, K.P. (1996). Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin. Biochemistry 35, 29012908.CrossRefGoogle ScholarPubMed
Jensen, A.A. & Spalding, T.A. (2004). Allosteric modulation of G-protein coupled receptors. European Journal of Pharmaceutical Science 21, 407420.CrossRefGoogle ScholarPubMed
Jin, J., Crouch, R.K., Corson, D.W., Katz, B.M., MacNichol, E.F. & Cornwall, M.C. (1993). Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones. Neuron 11, 513522.CrossRefGoogle ScholarPubMed
Jones, G.J., Fein, A., MacNichol, E.F. Jr & Cornwall, M.C., (1993). Visual pigment bleaching in isolated salamander retinal cones. The Journal of General Physiology 102, 483502.CrossRefGoogle ScholarPubMed
Kefalov, V.J., Cornwall, M.C. & Crouch, R.K. (1999). Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. The Journal of General Physiology 113, 491503.CrossRefGoogle ScholarPubMed
Kefalov, V.J., Crouch, R.K. & Cornwall, M.C. (2001). Role of non-covalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749755.CrossRefGoogle Scholar
Kefalov, V., Fu, Y., Marsh-Armstrong, N. & Yau, K.W. (2003). Role of visual pigment properties in rod and cone phototransduction. Nature 425, 526531.CrossRefGoogle ScholarPubMed
Kefalov, V.J., Estevez, M.E., Kono, M., Goletz, P.W., Crouch, R.K., Cornwall, M.C. & Yau, K.-W. (2005). Breaking the covalent bond—A pigment property that contributes to desensitization in cones. Neuron 46, 879890.CrossRefGoogle ScholarPubMed
Keirns, J.J., Miki, N., Bitensky, M.W. & Keirns, M. (1975). A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination. Biochemistry 14, 27602766.CrossRefGoogle ScholarPubMed
Kirschfeld, K. (1986). Activation of visual pigment: Chromophore structure and function. In The Molecular Mechanism of Photoreception, ed. Stieve, H., pp. 3149. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Kono, M., Goletz, P.W. & Crouch, R.K. (2008). 11-cis- and all-trans-retinols can activate rod opsin: Rational design of the visual cycle. Biochemistry 47, 75677571.CrossRefGoogle ScholarPubMed
Liman, E.R., Tytgat, J. & Hess, P. (1992). Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861871.CrossRefGoogle ScholarPubMed
Ma, J.-X., Znoiko, S., Othersen, K.L., Ryan, J.C., Das, J., Isayama, T., Kono, M., Oprian, D.D., Corson, D.W., Cornwall, M.C., Cameron, D.A., Harosi, F.I., Makino, C.L. & Crouch, R.K. (2001). A visual pigment expressed in both rod and cone photoreceptors. Neuron 32, 451461.CrossRefGoogle ScholarPubMed
Makino, C.L. Groesbeek, M., Lugtenburg, J. & Baylor, D.A. (1999). Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores. Biophysical Journal 77, 10241035.CrossRefGoogle ScholarPubMed
Makino, C.L., Wen, X.H. & Lem, J. (2003). Piecing together the timetable for visual transduction with transgenic animals. Current Opinion in Neurobiology 13, 404412.CrossRefGoogle ScholarPubMed
Matsumoto, H. & Yoshizawa, T. (1975). Existence of a β-ionone ring-binding site in the rhodopsin molecule. Nature 258, 523526.CrossRefGoogle ScholarPubMed
McCabe, S.L., Pelosi, D.M., Tetreault, M., Miri, A., Nguitragool, W., Kovithvathanaphong, P., Mahajan, R. & Zimmerman, A.L. (2004). All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels. The Journal of General Physiology 123, 521531.CrossRefGoogle ScholarPubMed
Palczewski, K., Jäger, S., Buczylko, J., Crouch, R.K., Bredberg, D.L., Hofmann, K.P., Asson-Batres, M.A. & Saari, J.C. (1994). Rod outer segment retinal dehydrogenase: Substrate specificity and role in phototransduction. Biochemistry 33, 1374113750.CrossRefGoogle ScholarPubMed
Rieke, F. & Baylor, D.A. (2000). Origin and functional impact of dark noise in retinal cones. Neuron 26, 181186.CrossRefGoogle ScholarPubMed
Sachs, K., Maretzki, D., Meyer, C.K. & Hofmann, K.P. (2000). Diffusible ligand all-trans-retinal activates opsin via a palmitoylation-dependent mechanism. The Journal of Biological Chemistry 275, 61896194.CrossRefGoogle Scholar
Sakmar, T.P., Menon, S.T., Marin, E.P. & Awad, E.S. (2002). Rhodopsin: Insights from recent structural studies. Annual Review of Biophysics and Biomolecular Structure 31, 443484.CrossRefGoogle ScholarPubMed
Schädel, S.A., Heck, M., Maretzki, D., Filipek, S., Teller, D.C., Palczewski, K. & Hofmann, K.P. (2003). Ligand channeling within a G-protein-coupled receptor: The entry and exit of retinals in native opsin. The Journal of Biological Chemistry 278, 2489624903.CrossRefGoogle ScholarPubMed
Soudijn, W., Van Wijngaarden, I. & Ijzerman, A.P. (2002). Allosteric modulation of G protein-coupled receptors. Current Opinions on Drug Discovery and Development 5, 749755.Google ScholarPubMed
Tsina, E., Chen, C., Koutalos, Y., Ala-Laurila, P., Tsacopoulos, M., Wiggert, B., Crouch, R.K. & Cornwall, M.C. (2004). Physiological and microfluorometric studies of reduction and clearance of retinal in bleached rod photoreceptors. The Journal of General Physiology 124, 429443.CrossRefGoogle ScholarPubMed
van Breugel, P.J., Bovee-Geurts, P.H., Bonting, S.L. & Daemen, F.J. (1979). Biochemical aspects of the visual process. XL. Spectral and chemical analysis of metarhodopsin III in photoreceptor membrane suspensions. Biochimica et Biophysica Acta 557, 188198.CrossRefGoogle ScholarPubMed
Xiong, W.-H. & Yau, K.-W. (2002). Rod sensitivity during Xenopus development. The Journal of General Physiology 120, 817827.CrossRefGoogle ScholarPubMed