Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T17:50:30.606Z Has data issue: false hasContentIssue false

The influence of retinal illuminance on L- and M-cone driven electroretinograms

Published online by Cambridge University Press:  23 February 2011

JAN KREMERS*
Affiliation:
Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany School of Life Sciences, University of Bradford, Bradford, UK
NEIL R.A. PARRY
Affiliation:
Manchester Academic Health Science Centre, University of Manchester and Vision Science Centre, Manchester Royal Eye Hospital, Manchester, UK
ATHANASIOS PANORGIAS
Affiliation:
Faculty of Life Sciences, University of Manchester, Manchester, UK
IAN J. MURRAY
Affiliation:
Faculty of Life Sciences, University of Manchester, Manchester, UK
*
*Address for correspondence and reprint requests to: Dr. Jan Kremers, Department of Ophthalmology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany. E-mail: jan.kremers@uk-erlangen.de

Abstract

The electroretinographic response to L- and M-cone isolating stimuli was measured at different luminance levels to study the effect of retinal illuminance on amplitude and phase, and how this may influence estimates of L:M ratios in the retina. It was found that the amplitude of L- and M-cone driven responses increases differently with increasing retinal illuminance: L-cone responses increase more quickly than those of M-cones. The L:M ratio does not change strongly with retinal illuminance. The phase of both L- and M-cone driven responses advances with increasing retinal illuminance. There is considerable interindividual variability in the phase difference between the two, but generally M-cone driven responses are phase advanced.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brainard, D.H., Calderone, J.B., Nugent, A.K. & Jacobs, G.H. (1999). Flicker ERG responses to stimuli parametrically modulated in color space. Investigative Ophthalmology & Visual Science 40, 28402847.Google ScholarPubMed
Brainard, D.H., Roorda, A., Yamauchi, Y., Calderone, J.B., Metha, A.B., Neitz, M., Neitz, J., Williams, D.R. & Jacobs, G.H. (2000). Functional consequences of the relative numbers of L and M cones. Journal of the Optical Society of America. A, Optics, Image Science, & Vision 17, 607614.CrossRefGoogle ScholarPubMed
Bush, R.A. & Sieving, P.A. (1996). Inner retinal contributions to the primate photopic fast flicker electroretinogram. Journal of the Optical Society of America. A, Optics, Image Science, & Vision 13, 557565.CrossRefGoogle Scholar
Challa, N.K., McKeefry, D., Parry, N.R.A., Kremers, J., Murray, I.J. & Panorgias, A. (2010). L- and M-cone input to 12Hz and 30Hz flicker ERGs across the human retina. Ophthalmic & Physiological Optics.CrossRefGoogle ScholarPubMed
de Vries, H.L. (1947). The heredity of the relative numbers of red and green receptors in the human eye. Genetica 24, 199212.CrossRefGoogle Scholar
Estévez, O. & Spekreijse, H. (1974). A spectral compensation method for determining the flicker characteristics of the human colour mechanisms. Vision Research 14, 823830.CrossRefGoogle ScholarPubMed
Estévez, O. & Spekreijse, H. (1982). The "silent substitution" method in visual research. Vision Research 22, 681691.CrossRefGoogle Scholar
Ingling, C.R., Tsou, B.H.P., Gast, T.J., Burns, S.A., Emerick, J.O. & Riesenberg, L. (1978). The achromatic Channel-I. The non-linearity of minimum-border and flicker matches. Vision Research 18, 379390.CrossRefGoogle ScholarPubMed
Ives, H.E. (1912). Studies in the photometry of lights of different colours I. Spectral luminosity curves obtained by the equality of brightness photometer and the flicker photometer under similar conditions. Philosophical Magazine 24, 149188.Google Scholar
Jacobs, G.H., Deegan, I.J.S. & Moran, J.L. (1996 a). ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes). Vision Research 36, 25872594.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Neitz, J. (1993). Electrophysiological estimates of individual variation in the L/M cone ratio. In Colour Vision Deficiencies XI, ed. Drum, B., pp. 107112. Dordrecht, The Netherlands: Kluwer Academic publishers.CrossRefGoogle Scholar
Jacobs, G.H., Neitz, J. & Krogh, K. (1996 b). Electroretinogram flicker photometry and its applications. Journal of the Optical Society of America. A, Optics, Image Science, & Vision 13, 641648.CrossRefGoogle ScholarPubMed
Krauskopf, J. (2000). Relative number of long- and middle-wavelength-sensitive cones in the human fovea. Journal of the Optical Society of America. A, Optics, Image Science, & Vision 17, 510516.CrossRefGoogle ScholarPubMed
Kremers, J. (2003). The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal retina. Progress in Retinal & Eye Research 22, 579605.CrossRefGoogle Scholar
Kremers, J., Czop, D. & Link, B. (2009). Rod and S-cone driven ERG signals at high retinal illuminances. Documenta Ophthalmologica 118, 205216.CrossRefGoogle ScholarPubMed
Kremers, J. & Link, B. (2008). Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways. Journal of Vision 8, 114.CrossRefGoogle ScholarPubMed
Kremers, J., Rodrigues, A.R., Silveira, L.C.L. & da Silva-Filho, M. (2010). Flicker ERGs representing chromaticity and luminance signals. Investigative Ophthalmology & Visual Science 51, 577587.CrossRefGoogle ScholarPubMed
Kremers, J. & Scholl, H.P.N. (2001). Rod-/L-cone and rod-/M-cone interactions in electroretinograms at different temporal frequencies. Visual Neuroscience 18, 339351.CrossRefGoogle ScholarPubMed
Kremers, J., Scholl, H.P.N., Knau, H., Berendschot, T.T.J.M., Usui, T. & Sharpe, L.T. (2000). L/M cone ratios in human trichromats assesed by psychophysics, electroretinograpy, and retinal densitometry. Journal of the Optical Society of America. A, Optics, Image Science, & Vision 17, 517526.CrossRefGoogle Scholar
Kremers, J., Stepien, M.W., Scholl, H.P.N. & Saito, C.A. (2003). Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics. Journal of Vision 3, 146160.CrossRefGoogle ScholarPubMed
Kremers, J., Usui, T., Scholl, H.P.N. & Sharpe, L.T. (1999). Cone signal contributions to electroretinograms in dichromats and trichromats. Investigative Ophthalmology & Visual Science 40, 920930.Google ScholarPubMed
Lee, B.B., Pokorny, J., Smith, V.C., Martin, P.R. & Valberg, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. Journal of the Optical Society of America. A, Optics & Image Science 7, 22232236.CrossRefGoogle ScholarPubMed
Murray, I.J., Kremers, J. & Parry, N.R.A. (2008). L- and M-Cone isolating ergs: LED versus CRT stimulation. Visual Neuroscience 25, 327331.CrossRefGoogle ScholarPubMed
Padmos, P. & van Norren, D. (1971). Cone spectral sensitivity and chromatic adaptation as revealed by human flicker electroretinography. Vision Research 11, 2742.CrossRefGoogle ScholarPubMed
Pokorny, J., Jin, Q. & Smith, V.C. (1993). Spectral-luminosity functions, scalar linearity, and chromatic adaptation. Journal of the Optical Society of America. A, Optics & Image Science 10, 13041313.CrossRefGoogle ScholarPubMed
Pokorny, J., Smith, V.C. & Lutze, M. (1989). Heterochromatic modulation photometry. Journal of the Optical Society of America. A, Optics & Image Science 6, 16181623.CrossRefGoogle ScholarPubMed
Purpura, K., Tranchina, D., Kaplan, E. & Shapley, R.M. (1990). Light adaptation in the primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells. Visual Neuroscience 4, 7593.CrossRefGoogle ScholarPubMed
Smith, V.C., Pokorny, J., Lee, B.B. & Dacey, D.M. (2001). Primate horizontal cell dynamics: An analysis of sensitivity regulation in the outer retina. Journal of Neurophysiology 85, 545557.CrossRefGoogle ScholarPubMed
Stockman, A., MacLeod, D.I.A. & Johnson, N.E. (1993). Spectral sensitivities of the human cones. Journal of the Optical Society of America. A, Optics, Image Science, & Vision 10, 24912521.CrossRefGoogle ScholarPubMed
Usui, T., Kremers, J., Sharpe, L.T. & Zrenner, E. (1998). Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength. Vision Research 38, 32473251.CrossRefGoogle ScholarPubMed