Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T17:48:41.223Z Has data issue: false hasContentIssue false

Glycine- and GABA-activated inhibitory currents on axon terminals of rabbit cone bipolar cells

Published online by Cambridge University Press:  03 February 2006

CHENGWEN ZHOU
Affiliation:
Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
RAMON F. DACHEUX
Affiliation:
Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Glycine- and GABA-activated currents were examined in the axon terminals of 12 types of rabbit cone bipolar cells. In the superfused retinal slice, a cell was voltage clamped at 0 mV in the presence of cobalt; then glycine or GABA was puffed onto the axon terminal. Types CBa1, CBa2, and a few CBa1-2 cells demonstrated larger glycine-activated currents than GABA-activated ones. However, some OFF cells (CBa2n, CBa1-2n, CBa1w), most CBa1-2, and most ON cells (CBb3, CBb3-4, CBb3n, and CBb4) displayed larger GABA-activated currents. The ON cell, CBb5, possessed only a GABA-activated current. The predominance of glycinergic currents in CBa1, CBa2, and a few CBa1-2 cells suggests a major input from the glycinergic AII amacrine cell and thus a key role for these cells in the rod bipolar pathway. Certain OFF cells (most CBa1-2) expressed larger GABA-activated currents. All types expressed both GABAA and GABAC currents about equally, although most OFF types (CBa1, CB a2n, CBa1-2, and CBa2n) displayed a slightly greater GABAA component.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dacheux, R.F. & Miller, R.F. (1976). Photoreceptor-bipolar cell transmission in the perfused retina eyecup of Mudpuppy. Science 191, 963964.CrossRefGoogle Scholar
Dong, C. & Werblin, F.S. (1998). Temporal contrast enhancement via GABAc feedback at bipolar terminals in the tiger salamander retina. Journal of Neurophysiology 79, 21712180.Google Scholar
Enz, R., Brandstatter, J.H., Wässle, H., & Bormann, J. (1996). Immunocytochemical localization of the GABAc receptor rho subunits in the mammalian retina. The Journal of Neuroscience 16, 44794490.Google Scholar
Euler, T. & Wässle, H. (1995). Immunocytochemical identification of cone bipolar cells in the rat retina. Journal of Comparative Neurology 261, 461478.CrossRefGoogle Scholar
Euler, T. & Wässle, H. (1998). Different contribution of GABAa and GABAc receptors to rod and cone bipolar cells in a rat retinal slice preparation. Journal of Neurophysiology 798, 13841395.Google Scholar
Greferath, U., Grünert, U., Muller, F., & Wässle, H. (1994). Localization of GABAa receptors in the rabbit retina. Cell Tissue Research 276, 295307.CrossRefGoogle Scholar
Grünert, U. (2000). Distribution of GABA and glycine receptors on bipolar and ganglion cells in the mammalian retina. Microscopic Research Technology 50, 130140.3.0.CO;2-I>CrossRefGoogle Scholar
Grünert, U. & Wässle, H. (1993). Immunocytochemical localization of glycine receptors in the mammalian retina. Journal of Comparative Neurology 335, 523537.CrossRefGoogle Scholar
Grünert, U. & Wässle, H. (1996). Glycine receptors in the rod pathway of the macaque monkey retina. Visual Neuroscience 13, 101115.CrossRefGoogle Scholar
Haverkamp, S., Ghosh, K.K., Hirano, A.A., & Wässle, H. (2003). Immunocytochemical description of five bipolar cell types of the mouse retina. Journal of Comparative Neurology 455, 463476.CrossRefGoogle Scholar
Kaupmann, K., Huggel, K., Heid, J., Flor, P.J., Bischoff, S., Mickel, S.J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., & Bettler, B. (1997). Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239246.CrossRefGoogle Scholar
Koulen, P., Malitschek, B., Kuhn, R., Bettler, B., Wässle, H., & Brandstätter, J.H. (1998). Presynaptic and postsynaptic localization of GABAB receptors in neurons of the rat retina. European Journal of Neuroscience 10, 14461456.CrossRefGoogle Scholar
MacNeil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E., & Masland, R.H. (2004). The population of bipolar cells in the rabbit retina. Journal of Comparative Neurology 472, 7386.CrossRefGoogle Scholar
Marc, R.E. (1989). The role of glycine in the mammalian retina. Progress in Retinal Research 8, 67107.Google Scholar
Massey, S.C. & Mills, S.L. (1996). A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. Journal of Comparative Neurology 366, 1533.3.0.CO;2-N>CrossRefGoogle Scholar
Massey, S.C. & Mills, S.L. (1999). Gap junctions between AII amacrinne cells and calbindin-positive bipolar cells in the rabbit retina. Visual Neuroscience 16, 11811189.CrossRefGoogle Scholar
McGillem, G. & Dacheux, R.F. (2001). Rabbit cone bipolar cells, correlation of their morphologies with whole-cell recordings. Visual Neuroscience 18, 675685.CrossRefGoogle Scholar
McGillem, G., Rotolo, T.C., & Dacheux, R.F. (2000). GABA responses of rod bipolar cells in rabbit retinal slices. Visual Neuroscience 17, 381389.CrossRefGoogle Scholar
Merighi, A., Raviola, E., & Dacheux, R.F. (1996). Connections of two types of flat cone bipolar cells in the rabbit retina. Journal of Comparative Neurology 371, 164178.3.0.CO;2-S>CrossRefGoogle Scholar
Mills, S.L. & Massey, S.C. (1992). Morphology of bipolar cells labeled by DAPI in the rabbit retina. Journal of Comparative Neurology 321, 133149.CrossRefGoogle Scholar
Mills, S.L. & Massey, S.C. (1995). Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377, 734737.CrossRefGoogle Scholar
Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1993). Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. Journal of Biological Chemistry 268, 1186811873.Google Scholar
Nawy, S. & Jahr, C.E. (1990). Suppression by glutamate of cGMP-activated condutance in retina bipolar cells. Nature 346, 269271.CrossRefGoogle Scholar
Nelson, R. & Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research 23, 11831195.CrossRefGoogle Scholar
Pang, J.-J., Gao, F., & Wu, S.M. (2004). Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina. Journal of Physiology 558, 897912.CrossRefGoogle Scholar
Pourcho, R.G. & Goebel, D.J. (1985). A combined Golgi and autoradiographic study of [3H]glycine-accumulating amacrine cells in the cat retina. Journal of Comparative Neurology 233, 473480.CrossRefGoogle Scholar
Pourcho, R.G. & Owczarzak, M.T. (1991a). Glycine receptor immunoreactivity is localized at amacrine synapses in cat retina. Visual Neuroscience 7, 611618.Google Scholar
Pourcho, R.G. & Owczarzak, M.T. (1991b). Connectivity of glycine immunoreactive amacrine cells in the cat retina. Journal of Comparative Neurology 307, 549561.Google Scholar
Rotolo, T.C. & Dacheux, R.F. (2003). Two neruophartamacological types of rabbit ON-alpha ganglion cells express GABAC receptors. Visual Neuroscience 20, 373384.CrossRefGoogle Scholar
Sassoe-Pognetto, M., Wässle, H., & Grünert, U. (1994). Glycinergic synapses in the rod pathway of the rat retina, cone bipolar cells express the α1 subunit of the glycine receptor. Journal of Neuroscience 14, 15131546.Google Scholar
Shields, C.R., Tran, M.N., Wong, R., & Lukasiewicz, P.D. (2000). Distinct ionotropic GABA receptors mediated presynaptic and postsynaptic inhibition in retinal bipolar cells. Journal of Neuroscience 20, 26732682.Google Scholar
Slaughter, M.M. & Pan, Z-H. (1992). The physiology of GABAB receptors in he vertebrate retina. Progress in Brain Research 90, 4760.CrossRefGoogle Scholar
Strettoi, E., Dacheux, R.F., & Raviola, E. (1994). Cone bipolar cellos as interneurons in the rod pathway of the rabbit retina. Journal of Comparative Neurology 347, 139149.CrossRefGoogle Scholar
Strettoi, E., Raviola, E., & Dacheux, R.F. (1992). Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. Journal of Comparative Neurology 325, 152168.CrossRefGoogle Scholar
Trexler, E.B., Li, W., Mills, S.L., & Massey, S.C. (2001). Couping from AII amacrine cells to on cone bipolar cells is bi-directional. Journal of Comparative Neurology 437, 408422.CrossRefGoogle Scholar
Vaney, D.I. (1990). The mosaic of the amacrine cell in the mammalian retina. Progress in Retinal Research 9, 49100.CrossRefGoogle Scholar
Vardi, N., Duvoisin, R., Wu, G., & Sterling, P. (2000). Location of mGluR6 to dendrites of ON bipolar cells in primate retina. Journal of Comparative Neurology 423, 402412.3.0.CO;2-E>CrossRefGoogle Scholar
Veruki, M.L. & Hartveit, E. (2002). Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. The Journal of Neuroscience 22, 1055810566.Google Scholar
Wässle, H., Koulen, P., Brandstatter, J.H., Fletcher, E.L., & C.M.Becker (1998). Glycine and GABA receptors in the mammalian retina. Vision Research 38, 14111430.CrossRefGoogle Scholar
Zhang, D., Pan, Z.H., Zhang, X., Brideau, A.D., & Lipton, S.A. (1995). Cloning of a aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. Proceedings of the National Academy of Sciences of the U.S.A. 92, 1175611760.CrossRefGoogle Scholar
Zhou, C. & Dacheux, R.F. (2004). All amacrine cells in the rabbit retina possess AMPA-, NMDA-, GABA-, and glycine-activated currents. Visual Neuroscience 21, 181188.CrossRefGoogle Scholar