Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T21:15:46.222Z Has data issue: false hasContentIssue false

General principles in motion vision: Color blindness of object motion depends on pattern velocity in honeybee and goldfish

Published online by Cambridge University Press:  26 April 2011

MAJA STOJCEV
Affiliation:
Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-Universität, Mainz, Germany
NILS RADTKE
Affiliation:
Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-Universität, Mainz, Germany
DANIELE D’AMARO
Affiliation:
Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-Universität, Mainz, Germany
ADRIAN G. DYER
Affiliation:
Department of Physiology, Monash University, Clayton, Victoria, Australia School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
CHRISTA NEUMEYER*
Affiliation:
Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-Universität, Mainz, Germany
*
*Address correspondence and reprint requests to: Christa Neumeyer, Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-Universität, D-55099 Mainz, Germany. E-mail: neumeyer@uni-mainz.de

Abstract

Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very “conservative.” This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

Type
Evolution and eye design
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burns, J. & Dyer, A.G. (2008). Diversity of speed accuracy strategies benefits social insects. Current Biology 18, 953954.CrossRefGoogle ScholarPubMed
Cronly-Dillon, J. & Sharma, S.C. (1968). Effect of season and sex on the photopic spectral sensitivity of the three-spined stickleback. The Journal of Experimental Biology 49, 679687.CrossRefGoogle ScholarPubMed
Damjanovic, E., Maximova, E. & Maximov, V. (2009). Receptive field size of direction-selective units in the fish tectum. Journal of Integrative Neuroscience 8, 7793.CrossRefGoogle ScholarPubMed
Daumer, K. (1956). Reizmetrische Untersuchungen des Farbensehens der Bienen. Zeitschrift für Vergleichende Physiologie 38, 413478.CrossRefGoogle Scholar
Dobkins, K.R. & Albright, T.D. (2004). Merging processing streams: Color cues for motion detection and interpretation. In The Visual Neurosciences, ed. Chalupa, M.L. & Werner, J.S., pp. 12171228. Cambridge, MA: MIT Press.Google Scholar
Dörr, S. & Neumeyer, C. (1997). Simultaneous color contrast in goldfish: A quantitative study. Vision Research 37, 15811593.CrossRefGoogle ScholarPubMed
Dörr, S. & Neumeyer, C. (2000). Color constancy in goldfish: The limits. Journal of Comparative Physiology A 186, 885896.Google ScholarPubMed
Dyer, A.G. (1999). Broad spectral sensitivities in the honeybee’s photoreceptors limit colour constancy. Journal of Comparative Physiology A 185, 445453.CrossRefGoogle Scholar
Dyer, A.G. & Chittka, L. (2004). The biological significance of distinguishing between similar colours in spectrally variable illumination: Bumblebees (Bombus terrestris) as a study case. Journal of Comparative Physiology A 190, 105114.CrossRefGoogle Scholar
Dyer, A.G. & Neumeyer, C. (2005). Simultaneous and successive color discrimination in the honeybee (Apis mellifera). Journal of Comparative Physiology A 119, 547557.CrossRefGoogle Scholar
Dyer, A.G., Paulk, A.C. & Reser, D.H. (2011). Colour processing in complex environments: Insights from the visual system of bees. Proceedings of the Royal Society of London. Series B 278, 952959.Google ScholarPubMed
Dyer, A.G., Spaethe, J. & Prack, S. (2008). Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. Journal of Comparative Physiology A 194, 617627.CrossRefGoogle ScholarPubMed
Gacic, Z., Maximova, E., Damjanovic, I., Maximov, P., Kasparson, A. & Maximov, V. (2009). Color properties of movement detectors in the Carassius gibelio (Bloch, 1782) tectum opticum studied by selective stimulation of different cone types. Archives of Biological Sciences 61, 1P2P. DOI: 10.2298/ABS09011PG.CrossRefGoogle Scholar
Gegenfurtner, K.R. & Hawken, M.J. (1996). Interaction of motion and color in the visual pathways. Trends in Neurosciences 19, 394401.CrossRefGoogle ScholarPubMed
Gehres, M. & Neumeyer, C. (2007). Small field motion detection in goldfish is red-green color blind and mediated by the M-cone type. Visual Neuroscience 24, 399407.CrossRefGoogle ScholarPubMed
Giurfa, M. (2004). Conditioning procedure and color discrimination in the honeybee Apis mellifera. Die Naturwissenschaften 91, 228231.CrossRefGoogle ScholarPubMed
Giurfa, M., Vorobyev, M., Kevan, P. & Menzel, R. (1996). Detection of colored stimuli by honeybees: Minimum visual angles and receptor specific contrasts. Journal of Comparative Physiology A 178, 699709.CrossRefGoogle Scholar
Gruber, M. (2011). Elektrophysiologische Charakterisierung der Neurone im Tectum opticum des Goldfisches hinsichtlich Farbe und Bewegung. Thesis, Johannes Gutenberg-Universität, Mainz, Germany.Google Scholar
Hassenstein, B. & Reichardt, W. (1956). Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung 11b, 513524.CrossRefGoogle Scholar
Helversen, O. von (1972). Zur spektralen Unterschiedsempfindlichkeit der Biene. Journal of Comparative Physiology 80, 439472.CrossRefGoogle Scholar
Henderson, S.T. (1977). Daylight and Its Spectrum (2nd ed.). Bristol, UK: Adam Hilger.Google Scholar
Horridge, G.A., Wang, X. & Zhang, S.W. (1990). Colour inputs to motion and object vision in an insect. Philosophical Transactions of the Royal Society London. Series B 329, 257263.Google Scholar
Kaiser, W. (1968). Zur Frage des Unterscheidungsvermögens für Spektralfarben: Eine Untersuchung der Optomotorik der königlichen Glanzfliege Phormia regina Meig. Zeitschrift für vergleichende Physiologie 61, 71102.CrossRefGoogle Scholar
Kaiser, W. & Liske, E. (1974). Die optomotorische Reaktion von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. Journal of Comparative Physiology A 89, 391408.CrossRefGoogle Scholar
Klar, M. & Hoffmann, K.-P. (2002). Visual direction-selective neurons of the rainbow trout. Brain Research Bulletin 57, 431433.CrossRefGoogle ScholarPubMed
Krauss, A. & Neumeyer, C. (2003). Wavelength dependence of the optomotor response in zebrafish (Danio rerio). Vision Research 43, 12731282.CrossRefGoogle ScholarPubMed
Lehrer, M. (1994). Spatial vision in the honeybee: The use of different cues in different tasks. Vision Research 34, 23632385.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
Logothetis, N.K. (1991). Is movement perception color blind? Current Biology 1, 298300.CrossRefGoogle ScholarPubMed
Masseck, O.A., Förster, S. & Hoffmann, K.-P. (2010). Sensitivity of the goldfish motion detection system revealed by incoherent random dot stimuli: Comparison of behavioural and neuronal data. PLoS One 5, e9461.CrossRefGoogle ScholarPubMed
Mora-Ferrer, C. & Neumeyer, C. (2009). Neuropharmacology of vision in goldfish: A review. Vision Research 49, 960969.CrossRefGoogle ScholarPubMed
Nakayama, K. (1985). Biological image motion processing: A review. Vision Research 25, 625660.CrossRefGoogle ScholarPubMed
Neumeyer, C. (1980). Simultaneous color contrast in the honeybee. Journal of Comparative Physiology A 139, 165176.CrossRefGoogle Scholar
Neumeyer, C. (1981). Chromatic adaptation in the honeybee: Successive color contrast and color constancy. Journal of Comparative Physiology A 144, 543553.CrossRefGoogle Scholar
Neumeyer, C. (1984). On spectral sensitivity in the goldfish. Evidence for neural interactions between different “cone mechanisms”. Vision Research 24, 12231231.CrossRefGoogle ScholarPubMed
Neumeyer, C. (1985). An ultraviolet receptor as a fourth receptor type in goldfish color vision. Die Naturwissenschaften 72, 162163.CrossRefGoogle Scholar
Neumeyer, C. (1986). Wavelength discrimination in the goldfish. Journal of Comparative Physiology A 158, 203213.CrossRefGoogle Scholar
Neumeyer, C. (1992). Tetrachromatic color vision in goldfish: Evidence by color mixture experiments. Journal of Comparative Physiology A 171, 639649.CrossRefGoogle Scholar
Neumeyer, C. (1998). Color vision in lower vertebrates. In Color Vision: Perspectives of Different Disciplines, ed. Backhaus, W.G.K., Kliegl, R. & Werner, J.S., pp. 149162. Berlin, Germany: Walter de Gruyter.CrossRefGoogle Scholar
Neumeyer, C. (2003). Wavelength dependence of visual acuity in goldfish. Journal of Comparative Physiology A 189, 811821.CrossRefGoogle ScholarPubMed
Neumeyer, C., Dörr, S., Fritsch, J. & Kardelky, C. (2002). Colour constancy in goldfish and man: Influence of surround size and lightness. Perception 31, 171187.CrossRefGoogle ScholarPubMed
Neumeyer, C., Wietsma, J.J. & Spekreijse, H. (1991). Separate processing of “color” and “brightness” in goldfish. Vision Research 31, 537549.CrossRefGoogle Scholar
Palacios, A.G., Varela, F.J., Srivastava, R. & Goldsmith, T.H. (1998). Spectral sensitivity of cones in goldfish, Carassius auratus. Vision Research 38, 21352146.CrossRefGoogle ScholarPubMed
Paulk, A.C., Phillips-Portillo, J., Dacks, A.M., Fellous, J.-M. & Gronenberg, W. (2008). The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. The Journal of Neuroscience, 28, 63196332.CrossRefGoogle ScholarPubMed
Przyrembel, C., Keller, B. & Neumeyer, C. (1995). Trichromatic color vision in the salamander (Salamandra salamandra). Journal of Comparative Physiology A 176, 575586.CrossRefGoogle Scholar
Schaerer, S. (1993). Die Wellenlängenabhängigkeit des Bewegungssehens bei Goldfischen (Carassius auratus) und Schildkröten (Pseudemys scripta elegans) gemessen mit der optomotorischen Reaktion. Thesis, Johannes Gutenberg-Universität, Mainz, Germany.Google Scholar
Schaerer, S. & Neumeyer, C. (1996). Motion detection in goldfish investigated with the optomotor response is “color blind”. Vision Research 36, 40254034.CrossRefGoogle ScholarPubMed
Schlieper, C. (1927). Farbensinn der Tiere und optomotorische Reaktion. Zeitschrift für Vergleichende Sinnesphysiologie 6, 453472.CrossRefGoogle Scholar
Skorupski, P. & Chittka, L. (2010). Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. The Journal of Neuroscience 30, 38963903.CrossRefGoogle ScholarPubMed
Spekreijse, H., Wietsma, J.J. & Neumeyer, C. (1991). Induced color blindness in goldfish: A behavioral and electrophysiological study. Vision Research 31, 551562.CrossRefGoogle ScholarPubMed
Srinivasan, M.V. (1985). Shouldn’t directional movement detection necessarily be “colour-blind”? Vision Research 25, 9971000.CrossRefGoogle ScholarPubMed
Srinivasan, M.V. & Lehrer, M. (1984). Temporal acuity of honeybee vision: Behavioural studies using moving stimuli. Journal of Comparative Physiology A 155, 297312.CrossRefGoogle Scholar
Srinivasan, M.V. & Zhang, S. (2004). Motion cues in insect vision and navigation. In The Visual Neurosciences, ed. Chalupa, M.L. & Werner, J.S., pp. 11931202. Cambridge, MA: MIT Press.Google Scholar
Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. (2008). Motion vision is independent of color in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105, 49104915.CrossRefGoogle ScholarPubMed
Zeki, S.M. & Shipp, S. (1988). The functional logic of cortical connections. Nature 335, 311317.CrossRefGoogle ScholarPubMed