Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:25:10.876Z Has data issue: false hasContentIssue false

Formation and storage of 11-cis retinol in the eyes of lobster (Homarus) and crayfish (Procambarus)

Published online by Cambridge University Press:  02 June 2009

Ranjana Srivastava
Affiliation:
Department of Biology, Yale University, New Haven
Daniel Lau
Affiliation:
Department of Biology, Yale University, New Haven
Timothy H. Goldsmith
Affiliation:
Department of Biology, Yale University, New Haven

Abstract

Modes of storage and mechanisms of formation of 11-cis retinoids in the eyes of animals vary widely among the major phyla. We here describe evidence from two species of macruran decapod crustacea that point to different processes from those known in insects, the other group of arthropods for which there is extensive data. The eyes of the lobster (Homarus) contain about 300 pmol of retinal, somewhat less free retinol, and variable amounts (up to 1000+ pmol) of two retinyl esters, over 90% of which contain retinol in the 11-cis configuration. The major ester contains the long chain, polyunsaturated fatty acid docosahexaenoate (C22:6), but retinyl oleate (C18:1) is also present. Crayfish (Procambarus) contain the same retinyl esters, although in much smaller amounts. Homogenates of the eyes of both species are capable of isomerizing all-trans retinyl docosahexaenoate to the 11-cis configuration without using the energy of light. Crude fractionation of homogenates shows isomerase activity associated with membranes. The reaction mechanism has not been explored in detail, but on the basis of present evidence it may be similar to that found in vertebrate pigment epithelium. It is clearly different from the light-dependent processes known in insects (Hymenoptera and Diptera) and cephalopod mollusks, where isomerization takes place at the level of the aldehyde and 11-cis retinyl esters are not present as major storage reserves.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, R.J., CaÑAda, F.J. & Rando, R.R. (1989). Solubilization and partial purification of retinyl ester synthetase and retinoid isomerase from bovine ocular pigment epithelium. Journal of Biological Chemistry 264, 92319238.CrossRefGoogle ScholarPubMed
Bazan, N.G., Reddy, T.S., Bazan, H.E.P. & Birkle, D.L. (1986). Metabolism of arachidonic and docosahexaenoic acids in the retina. Progress in Lipid Research 25, 595606.CrossRefGoogle ScholarPubMed
Bernstein, P.S., Law, W.C. & Rando, R.R. (1987). Biochemical characterization of the retinoid isomerase system of the eye. Journal of Biological Chemistry 262, 1684816857.CrossRefGoogle ScholarPubMed
Bridges, C.D.B. & Alvarez, R.A. (1982). Measurement of the vitamin A cycle. In Methods in Enzymology 81, Biomembranes, Part H. Visual Pigments and Purple Membranes, I, ed. Packer, L., pp. 463485. New York: Academic Press.CrossRefGoogle Scholar
CañAda, F.J., Law, W.C., Rando, R.R., Yamanoto, T., Derguini, F. & Nakanishi, K. (1990). Substrate specificities and mechanism in the enzymatic processing of vitamin A into 11-cis-retinol. Biochemistry 29, 96909697.CrossRefGoogle ScholarPubMed
Cronin, T.W. & Goldsmith, T.H. (1984). Dark regeneration of rhodopsin in crayfish photoreceptors. Journal of General Physiology 84, 6381.CrossRefGoogle ScholarPubMed
Deigner, P.S., Law, W.C., CaÑAda, F.J. & Rando, R.R. (1989). Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science 244, 968971.CrossRefGoogle ScholarPubMed
Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, R.A., Slater, E.E., Sigal, I.S., Caron, M.G., Lefkowitz, R.L. & Strader, C.D. (1986). Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature (London) 321, 7579.CrossRefGoogle ScholarPubMed
Goldsmith, T.H. (1994). Ultraviolet receptors and color vision: Evolutionary implications and a dissonance of paradigms. Vision Research 34, 14791487.CrossRefGoogle Scholar
Goldsmith, T.H. & Cronin, T.W. (1993). The retinoids of seven species of mantis shrimp. Visual Neuroscience 10, 915920.CrossRefGoogle ScholarPubMed
Groenendijk, G.W.T., Degrip, W.J. & Daemen, F.J.M. (1980). Quantitative determination of retinals with complete retention of their geometric configuration. Biochimica Biophysica Acta 617, 430438.CrossRefGoogle ScholarPubMed
Hafner, G.S., Tokarski, T., Jones, C. & Martin, R. (1982). Rhabdom degradation in white-eyed and wild-type crayfish after long term dark adaptation. Journal of Comparative Physiology 148, 419429.CrossRefGoogle Scholar
Hara, T. & Hara, R. (1972). Isomerization of retinal catalyzed by retinochrome in the light. Nature New Biology 242, 3943.CrossRefGoogle Scholar
Hara, T. (1988). Visual photoreception of the squid: Photopigment regeneration. In Molecular Physiology of Retinal Proteins, ed. Hara, T., pp. 305310. Osaka, Japan: Yamada Science Foundation.Google Scholar
Hubbard, R. (1956). Geometrical isomerization of vitamin A, retinene and retinene oxime. Journal of the American Chemical Society 78, 46624667.CrossRefGoogle Scholar
Johnson, R.L., Grant, K.B., Zankel, T.C., Boehm, M.F., Merbs, S.L., Nathans, J. & Nakanishi, K. (1993). Cloning and expression of goldfish opsin sequences. Biochemistry 32, 208214.CrossRefGoogle ScholarPubMed
Kong, K.L. & Goldsmith, T.H. (1977). Photosensitivity of retinular cells in white-eyed crayfish (Procambarus clarkii). Journal of Comparative Physiology 122, 273288.CrossRefGoogle Scholar
Kubo, T.K., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Matsuo, H., Hirose, T. & Numa, S. (1986). Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature (London) 323, 411416.CrossRefGoogle ScholarPubMed
Law, W.C. & Rando, R.R. (1988). Stereochemical inversion at C-15 accompanies the enzymatic isomerization of all-trans to 11-cis-retinoids. Biochemistry 27, 41474152.CrossRefGoogle ScholarPubMed
Livrea, M.A., Tesoriere, L. & Bongiorno, A. (1990). All-trans to 11-cis retinol isomerization in nuclear membrane fraction from bovine retinal pigment epithelium. Experimental Eye Research 52, 451459.CrossRefGoogle Scholar
Okano, T., Kojima, D., Fukada, Y., Schichida, Y. & Yoshizawa, T. (1992). Primary structures of chicken cone visual pigments: Vertebrate rhodopsins have evolved out of cone visual pigments. Proceedings of the National Academy of Sciences of the U.S.A. 89, 59325936.CrossRefGoogle ScholarPubMed
Ozaki, K., Terakita, A., Hara, R. & Hara, T. (1986). Rhodopsin and retinochrome in the retina of a marine gastropod, Conomulex luhuanus. Vision Research 26, 691705.CrossRefGoogle ScholarPubMed
Paulsen, R. & Schwemer, J. (1979). Vitamin-A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochimica et Biophysica Acta 557, 385390.CrossRefGoogle ScholarPubMed
Paulsen, R. & Schwemer, J. (1983). Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis retinal. European Journal of Biochemistry 137, 609614.CrossRefGoogle ScholarPubMed
Schwemer, J. (1983). Pathways of visual pigment regeneration in fly photoreceptor cells. Biophysics of Structure and Mechanism 9, 287298.CrossRefGoogle Scholar
Schwemer, J. (1984). Renewal of visual pigment in photoreceptors of the blowfly. Journal of Comparative Physiology A 154, 535547.CrossRefGoogle Scholar
Schwemer, J. (1986). Turnover of photoreceptor membrane and visual pigment in invertebrates. In The Molecular Mechanism of Photoreception, ed. Stieve, H., pp. 303326. Berlin, Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
Schwemer, J. (1988). Cycle of 3-hydroxy retinoids in an insect eye. In Molecular Physiology of Retinal Proteins, ed. Hara, T., pp. 299304. Osaka, Japan: Yamada Science Foundation.Google Scholar
Schwemer, J. (1989). Visual pigments of compound eyes—structure, photochemistry, and regeneration. In Facets of Vision, ed. Stavenga, D.G. & Hardie, R.C., pp. 112133. Berlin-Heidelberg-New York: Springer-Verlag.CrossRefGoogle Scholar
Schwemer, J., Pepe, I.M., Paulsen, R. & Cugnoli, C. (1984). Light-induced trans-cis isomerization of retinal by a protein from honeybee retina. Journal of Comparative Physiology A 154, 549554.CrossRefGoogle Scholar
Smith, W.C. & Goldsmith, T.H. (1991 a). The role of retinal photoisomerase in the visual cycle of the honeybee. Journal of General Physiology 97, 143165.CrossRefGoogle ScholarPubMed
Smith, W.C. & Goldsmith, T.H. (1991 b). Cellular localization of retinal photoisomerase in the compound eye of the honeybee (Apis mellifera). Visual Neuroscience 7, 237249.CrossRefGoogle Scholar
Smith, W.C., Friedman, M. & Goldsmith, T.H. (1992). Retinoids in the lateral eye of Limulus: Evidence for a retinal photoisomerase. Visual Neuroscience 8, 329336.CrossRefGoogle ScholarPubMed
Stowe, S. (1980). Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell and Tissue Research 211, 419440.CrossRefGoogle Scholar
Stowe, S. (1981). Effects of illumination changes on rhabdom synthesis in a crab. Journal of Comparative Physiology 142, 1925.CrossRefGoogle Scholar
Suzuki, T., Maeda, Y., Toh, Y. & Eguchi, E. (1988). Retinyl and 3-dehydroretinyl esters in the crayfish retina. Vision Research 28, 10611070.CrossRefGoogle ScholarPubMed
Trehan, A., CaÑAda, F.J. & Rando, R.R. (1990). Inhibitors of retinyl ester formation also prevent the biosynthesis of 11-cis-retinol. Biochemistry 29, 309312.CrossRefGoogle ScholarPubMed
Wald, G. & Burg, S.P. (1957). The vitamin A of the lobster. Journal of General Physiology 40, 609625.CrossRefGoogle ScholarPubMed
Waterman, T.H. (1982). Fine structure and turnover of photoreceptor membranes. In Visual Cells in Evolution, ed. Westfall, J.A., pp. 2341. New York: Raven Press.Google Scholar